Random numbers Week 10

Monte Carlo Integration
and Random Numbers

Higher dimensional integration

@ Simpson rule with M evaluations in
@ one dimension the error is order M4
@ d dimensions the error is order M4d

@ In general an order-n scheme in one dimensions is order-n/din d
dimensions

@ The phase space of physical N-body problems are usually very
high-dimensional
@ classical mechanics: d=6N (positions and velocities)
@ classical spin problem: d=2N (two angles)
@ quantum spin-S problem: d=(2S+1)N

Programming techniques 1

Random numbers Week 10

Throwing stones into a pond

How can we estimate the size of a pond with stones?
How can we calculate mt by throwing stones?

@ Let us take a square surrounding the area we want to measure:

/4

@ Choose M random points and count how many lie in the interesting
area

Again we have a Mathematica notebook for this problem

Monte Carlo integration

Consider an integral <f>= If(x)dx Ja’x

Q Q
@ Instead of evaluating it at equally spaced points evaluate it at M
points x; chosen randomly in W:

(f)= LMf f(x)

This is a Monte Carlo estimate for the integral

@ The error is statistical: Var 7

A= [T a2

M-1
Var f=(f*)=(fy

@ In &>8 dimensions Monte Carlo is better than Simpson!

Programming techniques 2

Random numbers Week 10

Sharply peaked functions

wasted effort \

In many cases a function is large only in a tiny region
Lots of time wasted in regions where the function is small
The sampling error is large since the variance is large

Importance sampling

@ Simple sampling as discussed before is slow if the variance is big
(function large in some regions, small in others)

@ Then importance sampling is better. We choose points not
uniformly but with probability p(x):

f S (x)
<f>=<;>p = ip(i)p(x)dx/idx

@ The error is now determined by the variance of f/p

@ We want to choose p similar to fand such that p-distributed
random numbers are easily available

Example can also be found on the Mathematica file

£(x) = exp(—x?) p(x) = exp(—x)

Programming techniques 3

Random numbers Week 10

Generating random numbers

Real random numbers are hard to obtain
classical or thermal chaos (atmospheric noise)
quantum mechanics
Commercial products: quantum random number generators
based on photons and semi-transparent mirror
4 Mbit/s from a USB device, too slow for most MC simulations

-) "

http://www.idquantique.com/

B

Pseudo Random numbers

Are generated by an algorithm
Not random at all, but completely deterministic

Look nearly random however when algorithm is not known and
may be good enough for our purposes

Never trust pseudo random numbers however!

Programming techniques 4

Random numbers Week 10

Linear congruential generators

@ are of the simple form x,,,=f(x,,), with f usually a linear function
@ A good choice is the GGL generator

x,,, =(ax, +c)modm

with a = 16807, ¢ =0, m = 231-1, x,=667790
quality depends sensitively on a,c,m and the seed value x,

@ Periodicity is a problem with such 32-bit generators
@ The sequence repeats identically after 23'-1 iterations
€ With modern computers that is just a few seconds!
€ Nowadays such 32-bit generators should not be used!

Lagged Fibonacci generators

2
x,=x, ,®x, modm

Good choices for 64-bit floating point numbers (m=1)
@ (55,24,+)
@ (607,273,+)

(2281,1252,+)

(9689,5502,+)

(44497,23463,+)

@ Seed blocks usually generated by linear congruential
@ Has very long periods since large block of seeds
no data dependencies for min(p,q) iterations

@ can be vectorized on vector CPUs

@ can be pipelined on scalar CPUs

Programming techniques 5

Random numbers

More advanced generators

As well-established generators fail new tests, better and better
generators get developed

Mersenne twister (Matsumoto & Nishimura, 1997)
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

Well generator (Panneton and L'Ecuyer , 2004)
http://www.iro.umontreal.ca/~panneton/WELLRNG.html

Are these numbers really random?

% No!

@ Are they random enough?
¢ Maybe?

€ How can we test?
@ Statistical tests for distribution
@ Statistical tests for short time correlations
@ Statistical tests for long time correlations
®..

@ Are these tests enough?
@ No! Your calculation could depend in a subtle way on hidden

correlations!
€ What is the ultimate test?

@ Run your simulation with various random number generators and
compare the results

Programming techniques

Week 10

Random numbers

Easiest: graphical

@ Before discussing statistical tests there is a simple first tool:
@ Create random pairs (x,y) and plot them
@ Create random triples (x,y,z) and plot them

@ Can you see correlations?

€ A Mathematica Notebook for these plots is on the web page of this
course

@ Graphical correlations test:

@ Create random n-tuplets (x1,x2, ..., Xn) and plot them (see
Mathematica notebook).

N
1 —
Correlations test: N ;-”’izwn = ()2 4+ O(N~Y2) vn

N
1 k 1 ~1/2
— F— —— 1 ~O(N

¢ Moments test: N ;wz E—1 ()

@ Best known (free) testsuite: Diehard from George Marsaglia.
See:
http://stat.fsu.edu/pub/diehard/.

Programming techniques

Week 10

Random numbers

Marsaglia’s diehard tests

Birthday spacings: Choose random points on a large interval. The spacings between
the points should be asymptotically Poisson distributed. The name is based on the
birthday paradox.

Overlapping permutations: Analyze sequences of five consecutive random numbers.
The 120 possible orderings should occur with statistically equal probability.

Ranks of matrices: Select some number of bits from some number of random
numbers to form a matrix over {0,1}, then determine the rank of the matrix. Count
the ranks.

Monkey tests: Treat sequences of some number of bits as "words". Count the
overlapping words in a stream. The number of "words" that don't appear should
follow a known distribution. The name is based on the infinite monkey theorem.
Count the 1s: Count the 1 bits in each of either successive or chosen bytes. Convert
the counts to "letters", and count the occurrences of five-letter "words".

Parking lot test: Randomly place unit circles in a 100 x 100 square. If the circle
overlaps an existing one, try again. After 12,000 tries, the number of successfully
"parked" circles should follow a certain normal distribution.

Marsaglia’s diehard tests (cont.)

Minimum distance test: Randomly place 8,000 points in a 10,000 x 10,000 square,
then find the minimum distance between the pairs. The square of this distance
should be exponentially distributed with a certain mean.

Random spheres test: Randomly choose 4,000 points in a cube of edge 1,000.
Center a sphere on each point, whose radius is the minimum distance to another
point. The smallest sphere's volume should be exponentially distributed with a
certain mean.

The squeeze test: Multiply 231 by random floats on [0,1) until you reach 1. Repeat
this 100,000 times. The number of floats needed to reach 1 should follow a certain
distribution.

Overlapping sums test: Generate a long sequence of random floats on [0,1). Add
sequences of 100 consecutive floats. The sums should be normally distributed with
characteristic mean and sigma.

Runs test: Generate a long sequence of random floats on [0,1). Count ascending
and descending runs. The counts should follow a certain distribution.

The craps test: Play 200,000 games of craps, counting the wins and the number of
throws per game. Each count should follow a certain distribution.

Programming techniques

Week 10

Random numbers Week 10

Non-uniform random numbers

we found ways to generate pseudo random numbers u in the
interval [0,1]

€ How do we get other uniform distributions?
@ uniform in [a,b[: a+(b-a) u

@ Other distributions:
@ inversion of integrated distribution
@ acceptance-rejection method

The probability density function of a distribution

@ The probability density function p(x) Gives the probability of finding
a number in an infinitesimal interval dx around x

@ The probability of finding a number x in an interval [a.b[is

Pla<x<b]= [p(x)dx

@ The integrated probability function P(x) is the integral of p(x)

P(x)= [p(t)dt

Programming techniques 9

Random numbers

Non-uniform distributions

How can we get a random number x distributed with f(x) in the
interval [a,b[from a uniform random number u?

Look at probabilities: F(x)

Plr<yl= [f()dx=F(y)= Plu< F(y)]

=x=F"u)

X

This method is feasible if the integral can be inverted easily
exponential distribution f(x)=A exp(-Ax)
can be obtained from uniform by x=-1/\ In(1-u)

Normally distributed numbers

@ The normal distribution
1

f(X):\/E

can be easily integrated in 2 dimensions

exp(—x2 /2)

@ We can obtain two normally distributed numbers from two uniform
ones (Box-Muller method)

n = ‘/—2 In(l —u,) sinu,
n, = ‘/—2 In(l —u,) cosu,

Programming techniques

Week 10

10

Random numbers Week 10

Uniform random numbers on N-sphere

@ random points s on the surface of an N-sphere

using acceptance-rejectance
@ get uniform random vector x with each component in [-1,1]
@ if norm is greater then one choose new one
@ normalize length to one

@ using Box-Muller
@ start with uniform random vector x
@ use Box-Muller to get normally distributed vector n
@ normalize the length to one: the angles are uniformly distributed

first method better only for very small N

Rejection method (von Neumann)

f/h f

reject

o

P u

_aceept
X X
Look for a simple distribution h that bounds f: f(x) < Ah(x)
Choose an h-distributed number x
Choose a uniform random number 0 <= u < 1

Accept x if u < f(x)/ Ah(x),
otherwise reject x and get a new pair (x,u)

Needs a good guess h to be efficient

Programming techniques 11

Random numbers Week 10

The Boost random library

Has become part of the C++03 standard and in a modifed form in
C++11

@ For now get it from Boost: http://www.boost.org/

@ It contains
€ Random number generators
@ Distribution functions

Generators in the Boost random library

@ All generators have members such as:
class RNG {
public:
typedef .. result type; //can be int, double,...
RNG() ;

void seed(); //the default seed

template <class Iterator>

Iterator seed(Iterator first, Iterator last);
/l seed from a range of unsigned int

result type min() const;
result type max() const;

result type operator(); //getthe next random number
Yi
@ They can be uniform floating point or integer generators with range
between min () and max ()

Programming techniques 12

Random numbers Week 10

Useful and good generators

@ #include <boost/random.hpp>

/I Mersenne-twisters (modern, improved lagged Fibonacci
generators)

boost::mt11213b rngl;

boost::mt19937 rng2;

// standard lagged Fibonacci generators
boost::lagged fibonacci607 rng3;
boost::lagged fibonaccil279 rng4;
boost::lagged fibonacci2281 rng5;

/ linear congruential generators

boost::minstd rand0 rng6;
boost::minstd rand rng7;

Read the documentation for more generators and details

Distributions in the Boost random library

@ Uniform distributions
@ Integer: boost: :uniform int<int> distl(a,b)
@ Floating point: boost: :uniform real<double> dist2(a,b)

@ Exponential distribution

1
p(x)= zeXp(—M)
@ boost::exponential distribution<double> dist3(lambda)
@ Normal distribution

1= e~ 1207)

@ boost::normal distribution<double> dist4(mu,sigma)

¥ Read the documentation for more distributions and details

Programming techniques 13

Random numbers Week 10

Combining generators with distributions

@ Is done using boost: :variate generator

/I define the distribution
boost::normal distribution<double> dist(0.,1.);

/I define the random number generator engine
boost::mt19937 engine;

/I create a normally distributed generator
boost::variate generator<boost::mt19937&,
boost::normal distribution<double> >

rng(engine,dist);

/l use it

for (int i=0;i<100;++1i)
std::cout << rng() << “\n”;

¥ Read the documentation for more details

Programming techniques 14

