
Random numbers	
 Week 10	

Programming techniques	
 1	

Monte Carlo Integration ���
and Random Numbers	

Higher dimensional integration	

u Simpson rule with M evaluations in "
u one dimension the error is order M-4!

u d dimensions the error is order M-4/d 
"

u  In general an order-n scheme in one dimensions is order-n/d in d
dimensions 
"

u The phase space of physical N-body problems are usually very
high-dimensional"
u classical mechanics: d=6N (positions and velocities)"
u classical spin problem: d=2N (two angles)"
u quantum spin-S problem: d=(2S+1)N"

Random numbers	
 Week 10	

Programming techniques	
 2	

Throwing stones into a pond	

u How can we estimate the size of a pond with stones?"
u How can we calculate π by throwing stones?  
"

u Let us take a square surrounding the area we want to measure: 
 
 
"

u Choose M random points and count how many lie in the interesting
area"

u Again we have a Mathematica notebook for this problem"

π/4

Monte Carlo integration	

u Consider an integral  
"

u  Instead of evaluating it at equally spaced points evaluate it at M
points xi chosen randomly in W: 
 
 
"

u This is a Monte Carlo estimate for the integral  
"

u The error is statistical: 
 
"

u  In d>8 dimensions Monte Carlo is better than Simpson!"

f = f (x)dx

Ω
∫ dx

Ω
∫

f ≈

1
M

f (x i)
i=1

M

∑

Δ =
Var f
M −1

∝M−1 / 2

Var f = f 2 − f 2

Random numbers	
 Week 10	

Programming techniques	
 3	

Sharply peaked functions	

" In many cases a function is large only in a tiny region"
" Lots of time wasted in regions where the function is small"
" The sampling error is large since the variance is large"

wasted effort	

Importance sampling	

u Simple sampling as discussed before is slow if the variance is big
(function large in some regions, small in others)"

u Then importance sampling is better. We choose points not
uniformly but with probability p(x): 
 
 
"

u The error is now determined by the variance of f/p"
u We want to choose p similar to f and such that p-distributed

random numbers are easily available "
u Example can also be found on the Mathematica file"

f =

f
p

p

:= f (x)
p(x)

p(x)dx
Ω
∫ dx

Ω
∫

f (x) = exp(−x 2) p(x) = exp(−x)

Random numbers	
 Week 10	

Programming techniques	
 4	

Generating random numbers	

" Real random numbers are hard to obtain"
" classical or thermal chaos (atmospheric noise)"
" quantum mechanics"

" Commercial products: quantum random number generators"
" based on photons and semi-transparent mirror"
" 4 Mbit/s from a USB device, too slow for most MC simulations"

http://www.idquantique.com/	

Pseudo Random numbers	

" Are generated by an algorithm"

" Not random at all, but completely deterministic"

" Look nearly random however when algorithm is not known and
may be good enough for our purposes"

" Never trust pseudo random numbers however!"

Random numbers	
 Week 10	

Programming techniques	
 5	

Linear congruential generators	

u are of the simple form xn+1=f(xn), with f usually a linear function"
u A good choice is the GGL generator 
 
 
 
with a = 16807, c = 0, m = 231-1, x0=667790"

u quality depends sensitively on a,c,m and the seed value x0  
"

u Periodicity is a problem with such 32-bit generators"
u The sequence repeats identically after 231-1 iterations"
u With modern computers that is just a few seconds!"
u Nowadays such 32-bit generators should not be used!"

xn +1 = (axn + c)modm

Lagged Fibonacci generators	

u   
"

u Good choices for 64-bit floating point numbers (m=1)"
u (55,24,+)"
u (607,273,+)"
u (2281,1252,+)"
u (9689,5502,+)"
u (44497,23463,+)"

u Seed blocks usually generated by linear congruential"
u Has very long periods since large block of seeds"
u no data dependencies for min(p,q) iterations "

u can be vectorized on vector CPUs"
u can be pipelined on scalar CPUs"

xn = xn− p ⊗ xn− qmodm

Random numbers	
 Week 10	

Programming techniques	
 6	

More advanced generators	

" As well-established generators fail new tests, better and better
generators get developed"

" Mersenne twister (Matsumoto & Nishimura, 1997) 
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html  
"

" Well generator (Panneton and L'Ecuyer , 2004) 
http://www.iro.umontreal.ca/~panneton/WELLRNG.html "

"

Are these numbers really random?	

u No!"
u Are they random enough?"

u Maybe?"
u How can we test?"

u Statistical tests for distribution"
u Statistical tests for short time correlations"
u Statistical tests for long time correlations"
u …"

u Are these tests enough?"
u No! Your calculation could depend in a subtle way on hidden

correlations!"
u What is the ultimate test?"

u Run your simulation with various random number generators and
compare the results"

Random numbers	
 Week 10	

Programming techniques	
 7	

Easiest: graphical	

u Before discussing statistical tests there is a simple first tool:"
u Create random pairs (x,y) and plot them"
u Create random triples (x,y,z) and plot them 
"

u Can you see correlations?  
"

u A Mathematica Notebook for these plots is on the web page of this
course"

	
Some simple RNG tests	

u Graphical correlations test:"

u Create random n-tuplets (x1,x2, ..., xn) and plot them (see
Mathematica notebook). 
"

u Correlations test: 
 
"

u Moments test:  
 
"

u Best known (free) testsuite: Diehard from George Marsaglia.
See: 
http://stat.fsu.edu/pub/diehard/."

Random numbers	
 Week 10	

Programming techniques	
 8	

Marsaglia’s diehard tests	

" Birthday spacings: Choose random points on a large interval. The spacings between
the points should be asymptotically Poisson distributed. The name is based on the
birthday paradox. "

" Overlapping permutations: Analyze sequences of five consecutive random numbers.
The 120 possible orderings should occur with statistically equal probability."

" Ranks of matrices: Select some number of bits from some number of random
numbers to form a matrix over {0,1}, then determine the rank of the matrix. Count
the ranks."

" Monkey tests: Treat sequences of some number of bits as "words". Count the
overlapping words in a stream. The number of "words" that don't appear should
follow a known distribution. The name is based on the infinite monkey theorem."

" Count the 1s: Count the 1 bits in each of either successive or chosen bytes. Convert
the counts to "letters", and count the occurrences of five-letter "words"."

" Parking lot test: Randomly place unit circles in a 100 x 100 square. If the circle
overlaps an existing one, try again. After 12,000 tries, the number of successfully
"parked" circles should follow a certain normal distribution."

Marsaglia’s diehard tests (cont.)	

" Minimum distance test: Randomly place 8,000 points in a 10,000 x 10,000 square,
then find the minimum distance between the pairs. The square of this distance
should be exponentially distributed with a certain mean."

" Random spheres test: Randomly choose 4,000 points in a cube of edge 1,000.
Center a sphere on each point, whose radius is the minimum distance to another
point. The smallest sphere's volume should be exponentially distributed with a
certain mean."

" The squeeze test: Multiply 231 by random floats on [0,1) until you reach 1. Repeat
this 100,000 times. The number of floats needed to reach 1 should follow a certain
distribution."

" Overlapping sums test: Generate a long sequence of random floats on [0,1). Add
sequences of 100 consecutive floats. The sums should be normally distributed with
characteristic mean and sigma."

" Runs test: Generate a long sequence of random floats on [0,1). Count ascending
and descending runs. The counts should follow a certain distribution."

" The craps test: Play 200,000 games of craps, counting the wins and the number of
throws per game. Each count should follow a certain distribution."

Random numbers	
 Week 10	

Programming techniques	
 9	

Non-uniform random numbers	

u we found ways to generate pseudo random numbers u in the
interval [0,1[ 
"

u How do we get other uniform distributions?"
u uniform in [a,b[: a+(b-a) u  
"

u Other distributions:"
u inversion of integrated distribution "
u acceptance-rejection method"

The probability density function of a distribution	

u The probability density function p(x) Gives the probability of finding
a number in an infinitesimal interval dx around x "

u The probability of finding a number x in an interval [a,b[is"

u The integrated probability function P(x) is the integral of p(x) "

P(x) = p(t)dt

−∞

x

∫

P[a ≤ x < b] = p(x)dx

a

b

∫

Random numbers	
 Week 10	

Programming techniques	
 10	

" How can we get a random number x distributed with f(x) in the
interval [a,b[from a uniform random number u?"

" Look at probabilities: 
 
 
 
 
"

" This method is feasible if the integral can be inverted easily"
" exponential distribution f(x)=λ exp(-λx)"
" can be obtained from uniform by x=-1/λ ln(1-u)"

Non-uniform distributions	

F(x)	

P[x < y]= f (x)dx
a

y

∫ =:F(y) ≡ P[u < F(y)]

⇒ x = F−1(u)

x!

u!

Normally distributed numbers	

u The normal distribution  
 
 
 
can be easily integrated in 2 dimensions"

u We can obtain two normally distributed numbers from two uniform
ones (Box-Muller method)"

f (x) =

1

2π
exp −x2 / 2()

n1 = −2 ln(1 − u1) sinu2
n2 = −2 ln(1 − u1) cosu2

Random numbers	
 Week 10	

Programming techniques	
 11	

Uniform random numbers on N-sphere	

u  random points s on the surface of an N-sphere"
u using acceptance-rejectance"

u get uniform random vector x with each component in [-1,1["
u if norm is greater then one choose new one"
u normalize length to one  
"

u using Box-Muller"
u start with uniform random vector x"
u use Box-Muller to get normally distributed vector n"
u normalize the length to one: the angles are uniformly distributed  
"

u first method better only for very small N"

Rejection method (von Neumann)	

" Look for a simple distribution h that bounds f: f(x) < λh(x)"
" Choose an h-distributed number x
" Choose a uniform random number 0 <= u < 1"
" Accept x if u < f(x)/ λh(x),  

otherwise reject x and get a new pair (x,u) 
"

" Needs a good guess h to be efficient"

f / h!

x!

reject	

accept	

u!

x!

u!

Random numbers	
 Week 10	

Programming techniques	
 12	

The Boost random library	

u Has become part of the C++03 standard and in a modifed form in
C++11"

u For now get it from Boost: http://www.boost.org/"

u  It contains"
u Random number generators"
u Distribution functions"

"

Generators in the Boost random library	

u All generators have members such as: 
class RNG {  
 public:  
 typedef … result_type; // can be int, double,… 
 RNG();  
 
 void seed(); // the default seed  
 template <class Iterator>  
 Iterator seed(Iterator first, Iterator last);  
 // seed from a range of unsigned int  
 
 result_type min() const;  
 result_type max() const;  
  
 result_type operator(); // get the next random number  
};"

u They can be uniform floating point or integer generators with range
between min() and max()"

Random numbers	
 Week 10	

Programming techniques	
 13	

Useful and good generators	

u #include <boost/random.hpp>  
 
// Mersenne-twisters (modern, improved lagged Fibonacci
generators)  
boost::mt11213b rng1;  
boost::mt19937 rng2;  
 
// standard lagged Fibonacci generators 
boost::lagged_fibonacci607 rng3;  
boost::lagged_fibonacci1279 rng4;  
boost::lagged_fibonacci2281 rng5;  
 
// linear congruential generators 
boost::minstd_rand0 rng6;  
boost::minstd_rand rng7;  
"

u Read the documentation for more generators and details"

Distributions in the Boost random library	

u Uniform distributions"
u  Integer: boost::uniform_int<int> dist1(a,b)"
u Floating point: boost::uniform_real<double> dist2(a,b)"

u Exponential distribution"

u boost::exponential_distribution<double> dist3(lambda)"

u Normal distribution"

u boost::normal_distribution<double> dist4(mu,sigma)  
"

u Read the documentation for more distributions and details"

p(x) =

1
λ

exp(−λx)

f (x) =

1

2π
exp −(x − µ)2 / 2σ 2()

Random numbers	
 Week 10	

Programming techniques	
 14	

Combining generators with distributions	

u  Is done using boost::variate_generator  
 
// define the distribution 
boost::normal_distribution<double> dist(0.,1.);  
 
// define the random number generator engine  
boost::mt19937 engine;  
 
// create a normally distributed generator 
boost::variate_generator<boost::mt19937&,  
 boost::normal_distribution<double> >  
 rng(engine,dist);  
 
// use it 
 for (int i=0;i<100;++i)  
 std::cout << rng() << “\n”;  
"

u  Read the documentation for more details"

