
Week 2 - C++ part 2	

 9/22/12	

Programming techniques	

 1	

An Introduction to C++ 	

Part 2

More basic C and C++:

Getting the new (updated) sources by SVN	

 Go to your source directory, e.g.
 cd pt12

 Update your sources
 svn update

 Then go there
 cd week2

Week 2 - C++ part 2	

 9/22/12	

Programming techniques	

 2	

Steps when compiling a program	

 What happens when we type the following?  
g++ hello.cpp

 Observe the steps by adding some extra flags: 
g++ --verbose -save-temps hello.cpp

hello.cpp hello.ii hello.s hello.o preprocessor	

 compiler	

 assembler	

a.out

libgcc.a libm.a

linker	

The C++ preprocessor	

  Is a text processor, manipulating the source code#
 Commands start with ##

 #define XXX
 #define YYY 1
 #define ADD(A,B) A+B
 #undef ADD
 #ifdef XXX
#else
#endif

 #if defined(XXX) && (YYY==1)
#elif defined (ZZZ)
#endif

 #include <iostream>
 #include “square.h”

Week 2 - C++ part 2	

 9/22/12	

Programming techniques	

 3	

#define	

  Defines a preprocessor macro#
 #define XXX “Hello”

cout << XXX;
 Gets converted to  

cout << “Hello”

 Macro arguments are possible#
 #define SUM(A,B) A+B

cout << SUM(3,4);#
 Gets converted to  

cout << 3+4;

  Definitions on the command line possible#
 g++ -DXXX=3 -DYYY
  Is the same as writing in the first line: 

#define XXX 3
#define YYY

#undef	

 Undefines a macro#
 #define XXX “Hello”
cout << XXX;
#undef XXX
cout << “XXX”;

 Gets converted to  
cout << “Hello”
cout << “XXX”

 Definitions on the command line are also possible#
 g++ -UXXX
 Is the same as writing in the first line: 
#undef XXX

#

Week 2 - C++ part 2	

 9/22/12	

Programming techniques	

 4	

Looking at preprocessor output	

 Running only the preprocessor:#
 c++ -E

 Running the full compile process but storing the preprocessed files#
 c++ -save-temps

 Look at the files pre1.C and pre2.C, then at the output of#

 c++ -E pre1.C
 c++ -E pre2.C
 c++ -E -DSCALE=10 pre2.C

#ifdef … #endif	

 Conditional compilation can be done using #ifdef#
 #ifdef SYMBOL
 something
#else
 somethingelse
#endif

 Becomes, if SYMBOL is defined: 
something#

 Otherwise it becomes 
 somethingelse#

 Look at the output of#
 c++ -E pre3.C
 c++ -DDEBUG -E pre3.C

Week 2 - C++ part 2	

 9/22/12	

Programming techniques	

 5	

#if … #elif … #endif	

 Allows more complex instructions, e.g.#
 #if !defined (__GNUC__)
 std::cout << “ A non-GNU compiler”;
#elif __GNUC__<=2 && _GNUC_MINOR < 95
 std::cout << “gcc before 2.95”;
#elif __GNUC__==2
 std::cout << “gcc after 2.95”;
#elif __GNUC__>=3
 std::cout << “gcc version 3 or higher”;
#endif
#

#error	

 Allows to issue error messages 
 
#if !defined(__GNUC__)
#error This program requires the GNU compilers
#else
…
#endif

 Try the following#
 g++ -c pre4.C

Week 2 - C++ part 2	

 9/22/12	

Programming techniques	

 6	

#include “file.h” #include <iostream>	

  Includes another source file at the point of invocation#

 Try the following#
 c++ -E pre5.C

 < > brackets refer to system files, e.g. #include <iostream>
 c++ -E pre6.C

 With -I you tell the compiler where to look for include files. Try:#
 c++ -E pre7.C
 c++ -E -Iinclude pre7.C#

Segmenting programs	

  Programs can be #
 split into several files #
 Compiled separately#
 and finally linked together#

  However functions defined in
another file have to be declared
before use!#

  The function declaration is similar
to the definition #
 but has no body!#
 parameters need not be given

names#

  Easiest solution are header files.
Help maintain consistency.#

  file “square.hpp”#
double square(double);
#

  file “square.cpp”#
#include “square.hpp”
double square(double x) {
 return x*x;
}
#

  file “main.cpp”#
#include <iostream>
#include “square.hpp”

int main() {
 std::cout << square(5.);
}
#

Week 2 - C++ part 2	

 9/22/12	

Programming techniques	

 7	

Compiling and linking	

 Compile the file square.cpp, with the -c option (no linking)#
 c++ -c square.cpp

 Compile the file main.cpp, with the -c option (no linking)#
 c++ -c main.cpp

 Link the object files#
 c++ main.o square.o

Include guards	

 The following fails to compile :#
 #include “incl.hpp”
#include “incl.hpp”

 Try it:#
 c++ -c guard.C
#

 Add include guards to incl.h and try again:#
 #ifndef SQUARE_H
#define SQUARE_H

int x;
#endif

Week 2 - C++ part 2	

 9/22/12	

Programming techniques	

 8	

Assert in header <cassert>	

 are a way to check preconditions, postconditions and invariants#
 <cassert> looks something like:#

#ifdef NDEBUG

#define assert(e) ((void)0)

#else

#define assert(e) …
#endif

  If the expression is false the program will abort and print the
expression with a notice that this assertion has failed#

 Try it#
 c++ assert.C
#

Making a library	

 Often used *.o files can be packed into a library, e.g.:#
 ar ruc libtest.a square.o
ranlib libtest.a
c++ main.cpp -L. -ltest

 ar creates an archive, more than one object file can be specified#
 The name must be libsomething.a

 ranlib adds a table of contents (not needed on some platforms)#

 -L specifes the directory where the library#

 -lsomething specifies looking in the librarylibsomething.a

Week 2 - C++ part 2	

 9/22/12	

Programming techniques	

 9	

How libraries work	

 What is done here:#
 c++ main.C -L. -ltest#

 After compilation the object files are linked#

  If there are undefined functions (e.g. square) the libraries are
searched for the function, and the needed functions linked with the
object files#

 Note that the order of libraries is important#
  if liba.a calls a function in libb.a, you need to link in the right

order: -la -lb#

Documenting your library	

  After you finish your library, document it with#

  Synopsis of all functions, types and variables declared#

  Semantics#
  what does the function do?#

  Preconditions#
  what must be true before calling the function#

  Postconditions#
  what you guarantee to be true after calling the function if the precondition was true#

  What it depends on#

  Exception guarantees (will be discussed later)#

  References or other additional material#

Week 2 - C++ part 2	

 9/22/12	

Programming techniques	

 10	

Example documentation	

 Header file “square.h” contains the function “square”: 
#
 Synopsis: 
double square(double x);

 square calculates the square of x 
#

 Precondition: the square can be represented in a double  
std::abs(x) <= std::sqrt(std::numeric_limits<double>::max())

 Postcondition: the square root of the return value agrees with the
absolute value of x within floating point precision: 
std::sqrt(square(x)) - std::abs(x) <=
std::abs(x) *std::numeric_limits<double>::epsilon

 Dependencies: none#
#

Contract programming	

 For each function define the set of#
 Preconditions#

 Conditions that the caller has to satisfy to get legal and correct behavior.#
 The callee can assert on the conditions, to test the precondition and abort if hey are

not satsified. This helps debugging.#
 Postconditions#

 Conditions that the callee guarantees if the caller satisfies the preconditions. Again
the callee can assert on the postconditions to help debugging if it is not obvious
that the postcondition is satisfied.#

 Invariants#
 Are expressions that stay unchanged when a mutating function is called, if the

preconditions are satisfied.#

 Document the preconditions, postconditions and invariants and
include tests#

#

Week 2 - C++ part 2	

 9/22/12	

Programming techniques	

 11	

The cost of a function call	

 A function call is expensive:#
 Values in registers might need to be saved in memory#
 Function arguments might need to be stored in memory#
 A jump to the function is done, stopping all pipelines#
 Function arguments might need to be read from memory#
 Only then can the function start to execute#

 Let us look at the assembly code of a simple example#

 c++ -c -save-temps -O0 functioncall.cpp
 c++ -c -save-temps -O functioncall.cpp
 c++ -c -save-temps -finline-functions functioncall.cpp

 Look at functioncall.s - What can you observe?#
 Can you observe automatic “inlining”?#

Inlining	

 A function call takes several hundred CPU cycles#
 For simple functions that are called often this is a big waste of time:#

 float square(float);

int main() {
 float sq[10000];
 for (int k=0;k<10000;++k)
 sq[k] = square(k);
}#

  It is better to inline the function#
 inline float square(float x) {return x*x;}

 This leads to the same optimized code as:#
 sq[k] = float(k)*float(k);

 Note that for an inline function not only the declaration but the
complete function body must be in the header file!#

Week 2 - C++ part 2	

 9/22/12	

Programming techniques	

 12	

Recursion	

  is elegant and allowed  
unsigned long fac(unsigned short k) {
 return k ? k*fac(k-1) : 1;
}
#

 however these function calls cannot be inlined!#

 non-recursive version often faster 
unsigned long fac(unsigned short k) {
 unsigned long r=1;
 if(k) do { r *=k;} while(--k);
 return r;
}

 exception: template codes, as they are evaluated at compile time.
We will come back to that later.

Default function arguments	

 are sometimes useful  
 
float root(float x, unsigned int n=2); // n-th root of x 
 
int main()
{
 root(5,3); // cubic root of 5  
 root(3,2); // square root of 3
 root(3); // also square root of 3 
}  
#

  the default value must be a constant! 
 
unsigned int d=2;
float root(float x, unsigned int n=d); // not allowed!#

