
Introduction	

 9/15/12	

Programming techniques	

 1	

Programming techniques for scientific
simulations	

Autumn semester 2012	

Information	

 Prof. Dr. Matthias Troyer"
 Office: HIT G31.8"
 Tel.: 044/633 2589"
 E-Mail: troyer@phys.ethz.ch  
"

 Exercises:"
 Kiryl Pakrouski <pkiryl@phys.ethz.ch>"
 Jakub Imriska <jimriska@ethz.ch>"

Introduction	

 9/15/12	

Programming techniques	

 2	

Administrative issues	

 Time of the lecture ?"

 Time of the exercises?  
"

 Computer accounts:"
 Student workstation accounts of the D-PHYS"
 Sign up this week or next! 
"

About the course	

 RW (CSE) students"

 Mandatory lecture in the 3rd semester in the bachelor curriculum"

 Physics students"

 Recommended course as preparation for:"
Computational Physics Courses:"
"Introduction to Computational Physics (AS) 
Computational Statistical Physics (SS) 
Computational Quantum Physics (SS)"

"
Semester thesis in Computational Physics"
Masters thesis in Computational Physics"
PhD thesis in Computational Physics"

Introduction	

 9/15/12	

Programming techniques	

 3	

A few quiz questions to get an overview of your knowledge	

1.  How are your C++ programming skills?"

A.  I have never programmed at all"
B.  I have never programmed in C nor C++"
C.  I know some basic C"
D.  I know some basic C++"
E.  I know C++ well"
F.  I am a C++ guru"

A few quiz questions to get an overview of your knowledge	

2. How is the integer value +1 represented in binary in a 16 bit integer"

A.  0000000000000000"
B.  0000000000000001"
C.  1000000000000000"
D.  1111111111111111"
E.  1000000000000001"
F.  1111111111111110"

Introduction	

 9/15/12	

Programming techniques	

 4	

A few quiz questions to get an overview of your knowledge	

3. How is the integer value -1 represented in binary in a 16 bit integer"

A.  0000000000000000"
B.  0000000000000001"
C.  1000000000000000"
D.  1111111111111111"
E.  1000000000000001"
F.  1111111111111110"

A few quiz questions to get an overview of your knowledge	

4. What is the size of the string “Hello”, i.e. the result of  
" " ""
 sizeof("Hello")"

A.  1"
B.  5"
C.  6"
D.  7"
E.  8"

Introduction	

 9/15/12	

Programming techniques	

 5	

A few quiz questions to get an overview of your knowledge	

5. What will the following code print: 
" " ""
 int a=0;

 std::cout << a++;

 std::cout << ++a;
 std::cout << a;"

A.  012"
B.  022"
C.  112"
D.  122"
E.  123"

A few quiz questions to get an overview of your knowledge	

6. What is the machine precision ε?"

A.  The smallest floating point number that can be represented"
B.  The smallest positive floating point number "
C.  The largest number such that 1.0 + ε = 1.0"
D.  The smallest number such that 1.0 + ε ≠ 1.0"
E.  The largest number such that 0.0 + ε = 0.0"
F.  The smallest number such that 0.0 + ε ≠ 0.0"

Introduction	

 9/15/12	

Programming techniques	

 6	

A loop example: what is wrong?	

std::cout << “Enter a number: “;
unsigned int n;

std::cin >> n;

for (int i=1;i<=n;++i)
 cout << i << "\n";

int i=0;

while (i<n)
 std::cout << ++i << "\n";

i=1;
do

 cout << i++ << "\n";
while (i<=n);

i=1;

while (true) {

 if(i>n) break;
 cout << i++ << "\n”;

}

7. Does any of the loops not always
print all positive numbers up to n?"

A.  All loops are wrong"
B.  The first loop is wrong"
C.  The second loop is wrong"
D.  The third loop is wrong"
E.  The fourth loop is wrong"
F.  All loops are correct"

Consider the following five swap functions	

  Five examples for swapping number"
void swap1 (int a, int b) { int t=a; a=b; b=t; }

void swap2 (int& a, int& b) { int t=a; a=b; b=t;}

void swap3 (int const & a, int const & b) { int t=a; a=b; b=t;}

void swap4 (int *a, int *b) { int *t=a; a=b; b=t;}

void swap5 (int* a, int* b) {int t=*a; *a=*b; *b=t;}

8. What will happen if we compile it?"
"
A.  All will compile"
B.  swap1 will not compile"
C.  swap2 will not compile"
D.  swap3 will not compile"
E.  swap4 will not compile"
F.  swap5 will not compile"

"

Introduction	

 9/15/12	

Programming techniques	

 7	

Consider the following five swap functions	

  Five examples for swapping number"
void swap1 (int a, int b) { int t=a; a=b; b=t; }

void swap2 (int& a, int& b) { int t=a; a=b; b=t;}

void swap3 (int const & a, int const & b) { int t=a; a=b; b=t;}

void swap4 (int *a, int *b) { int *t=a; a=b; b=t;}

void swap5 (int* a, int* b) {int t=*a; *a=*b; *b=t;}

"
  Now consider these calls"

  int a=1; int b=2; swap1(a,b); cout << a << " " << b << "\n";
  int a=1; int b=2; swap2(a,b); cout << a << " " << b << "\n";
  int a=1; int b=2; swap3(a,b); cout << a << " " << b << "\n";
  int a=1; int b=2; swap4(&a,&b); cout << a << " " << b << "\n";
  int a=1; int b=2; swap5(&a,&b); cout << a << " " << b << "\n";

  9. Which swap functions actually swap the values?"

Consider the following five swap functions	

  Five examples for swapping number"
void swap1 (int a, int b) { int t=a; a=b; b=t; }

void swap2 (int& a, int& b) { int t=a; a=b; b=t;}

void swap3 (int const & a, int const & b) { int t=a; a=b; b=t;}

void swap4 (int *a, int *b) { int *t=a; a=b; b=t;}

void swap5 (int* a, int* b) {int t=*a; *a=*b; *b=t;}

9. Which swap functions actually swap the values?"
"
A.  1 and 4 will work"
B.  2 and 5 will work"
C.  all but 3 will work"
D.  1 and 2 will work "
E.  3 will work"
F.  4 and 5 will work"

"

Introduction	

 9/15/12	

Programming techniques	

 8	

Prerequisites 	

	

 Programming"
 Knowledge of at least one programming language"
 Basic algorithms"

 Searching, sorting"
 Knowledge of fundamental data structures"

 Arrays, lists, trees"
 Will be reviewed, but initial knowledge an advantage"

 Numerical analysis"
 Linear systems of equations and eigenvalue problems"
 Numerical integration and differentiation"
 Basic knowledge of statistics"

Questions regarding programming	

 Who knows "
 Assembler?"

 C?"

 Java?"

 C++?"
 Classes?"
 Inheritance?"
 Templates?"
 Generic Programming?"
 Standard library?"
 Optimization in C++?"
 Expression templates?"

Introduction	

 9/15/12	

Programming techniques	

 9	

Questions regarding hardware	

 Who knows about"

 Memory?"
 Caches?"
 Registers?"

 Integer formats?"
 Floating point formats?"

 CPU Types?"

Contents of the lecture	

 Understanding hardware"
 Memory, caches, registers, CPU"

 Understanding assembly language"
 What does a compiler do with your code?"
 I recommend to attend lectures on writing compilers"

 Programming languages"
 C, C++"

"

Introduction	

 9/15/12	

Programming techniques	

 10	

Contents of the lecture	

 Abstractions for higher level programming"
 Object oriented programming and virtual functions"
 Generic programming and templates"

 Libraries"
 High performance libraries"

 BLAS, ATLAS, LAPACK"

 C++ libraries"
 Standard library"
 Boost"

 Library design"
 Reusable components"
 Generic interfaces"

Literature on C++ and optimization	

  Andrew Koenig and Barbara E. Moo, Accelerated C++,  
Addison Wesley 2000"
 Good and short introduction"

  Stanley B. Lippman, Essential C++,  
Addison Wesley 2000"
 Good and short introduction"

  Bjarne Stroustrup, The C++ Programming Language, 3rd edition, Addison
Wesley 1997"
 The reference book"
"

Introduction	

 9/15/12	

Programming techniques	

 11	

Why C++? 	

	

 Generic high level programming"
 Shorter development times"
 Smaller error rate"
 Easier debugging"
 Better software reuse  
"

 Efficiency"
 As fast or faster then FORTRAN"
 Faster than C, Pascal, … 
"

 Job skills"
 We all need to find a job some day..."

Generic programming	

 Print a sorted list of all words used by Shakespeare 
 
#include <iostream> 
#include <algorithm> 
#include <vector> 
#include <string> 
#include <iterator> 
 
using namespace std; 
 
int main() 
 { 
 vector<string> data; 
 copy(istream_iterator<string>(cin), istream_iterator<string>(), back_inserter(data)); 
 sort(data.begin(), data.end()); 
 unique_copy(data.begin(), data.end(), ostream_iterator<string>(cout,"\n")); 
}"

Introduction	

 9/15/12	

Programming techniques	

 12	

Why C++?	

C++ C Java FORTRAN FORTRAN
95

Efficiency √√ √ × √√ √

Modular Programming √ √ √ × √

Object Oriented
Programming

√ × √ × √

Generic Programming √ × × × ×

A first C++ program	

/* A first program */"
"
#include <iostream>

using namespace std;

int main()

{
 cout << “Hello students!\n”;
 // std::cout without the using declaration"
 return 0;

}

"

  /* and */ are the delimiters for
comments"

  includes declarations of I/O
streams"

  declares that we want to use the
standard library (“std”)"

  the main program is always
called “main”"

  “cout” is the standard output
stream."

  “<<“ is the operator to write to a
stream"

  statements end with a ;"
  // starts one-line comments"
  A return value of 0 means that

everything went OK"

Introduction	

 9/15/12	

Programming techniques	

 13	

Getting the sources from the svn repository	

"
  Check out the source tree of the examples, the password is hs12"

svn co --username lectures https://alps.ethz.ch/lectures/pt

"
 Go to the directory 

 
cd pt/week1"

  Compile the program"

c++ -o hello hello.C

  Run the program"
./hello"

Building by CMake	

  Cmake (http://www.cmake.org) is a cross platform build tool"

 On Linux, Unix and MacOX use CMake to create a Makefile  
 
cmake .
make

"
 Or use Xcode on the Mac 
 
cmake –G Xcode .
open Project.xcodeproj

 Or use the CMake GUI on Windows and MS Visual Studio"
"

Introduction	

 9/15/12	

Programming techniques	

 14	

More about the std namespace	

#include <iostream>

using namespace std;
int main()

{

 cout << “Hello\n”;
}

#include <iostream>

int main()

{

 std::cout << “Hello\n”;
}

#include <iostream>

using std::cout;
int main()

{

 cout << “Hello\n”;
}

"
  All these versions are equivalent"

  Feel free to use any style in your
program"

  Never use using statements
globally in libraries!"

A first calculation	

#include <iostream>

#include <cmath>

using namespace std;

int main()

{
 cout << “The square root of 5 is”
 << sqrt(5.) << “\n”;
 return 0;

}

"

  <cmath> is the header for
mathematical functions 
 
 
 
"

 Output can be connected by <<

  Expressions can be used in
output statements 
"

 What are these constants?"
 5."
 0"
 “\n” 
"

Introduction	

 9/15/12	

Programming techniques	

 15	

Integral data types	

 Signed data types"
 short, int, long, long long
 Not yet standard: int8_t, int16_t, int32_t, int64_t

 Unsigned data types
 unsigned short, unsigned int,
unsigned long, unsigned long long

 Not yet standard: uint8_t, uint16_t, uint32_t, uint64_t

 Are stored as binary numbers"
 short: usually 16 bit"
 int: usually 32 bit"
 long: usually 32 bit on 32-bit CPUs and 64 bit on 64-bit CPUs"
 long long: usually 64 bits"

 An n-bit integer is stored in n/8 bytes"
 Little-endian: least significant byte first"
 Big-endian: most significant byte first"
 Exercise: write a program to check the format of your CPU"

 Unsigned"
 x just stored as n bits, values from 0 … 2n-1"

 Signed"
 Stored as 2’s complement, values from -2n-1 … 2n-1-1"
 Highest bit is sign S"
 x ≥ 0 : S=0, rest is x
 x < 0 : S=1, rest is ~(-x -1)
 Advantage of this format: signed numbers can be added like unsigned"

Integer representations	

S	

 n-1 bits mantissa x	

n bits mantissa x	

Introduction	

 9/15/12	

Programming techniques	

 16	

Integer constants	

  Integer literals can be entered in a natural way"

 Suffixes specify type (if needed)"
 int: 0, -3, …."
 unsigned int: 3u, 7U ,..."
 short: 0S, -5s, ..."
 unsigned short: 1us, 9su, 6US, ..."
 long: 0L, -5l, ..."
 unsigned long: 1ul, 9Lu, 6Ul, ..."
 long long: 0LL, -5ll, ..."
 unsigned long long: 1ull, 9LLu, 6Ull, ..."

Characters	

 Character types"
 Single byte: char, unsigned char, signed char

 Uses ASCII standard
 Multi-byte (e.g. for Japanese: 大): wchar_t

 Unfortunately is not required to use Unicode standard

 Character literals"
 ‘a’, ‘b’, ‘c’, ‘1’, ‘2’, …
 ‘\t’ … tabulator"
 ‘\n’ … new line"
 ‘\r’ … line feed"
 ‘\0’ … byte value 0"

Introduction	

 9/15/12	

Programming techniques	

 17	

Strings	

 String type"
 C-style character arrays char s[100] should be avoided"
 C++ class std::string for single-byte character strings"
 C++ class std::wstring for multi-byte character strings"

 String literals"
 “Hello”"
 Contain a trailing ‘\0’, thus sizeof(“Hello”)==6"

Boolean (logical) type	

 Type
 bool

 Literal
 true
 false

Introduction	

 9/15/12	

Programming techniques	

 18	

Floating point numbers	

 Floating point types"
 single precision: float "

 usually 32 bit"
 double precision: double

 Usually 64 bit"
 extended precision: long double

 Often 64 bit (PowePC), 80 bit (Pentium) or 128 bit (Cray)

 Literals"
 single precision: 4.562f, 3.0F"
 double precision: 3.1415927, 0."
 extended precision: 6.54498467494849849489L

IEEE floating point representation	

 The 32 (64) bits are divided into sign, exponent and mantissa"

Type" Exponent" Mantissa" Smallest" Largest" Base 10
accuracy"

float" 8" 23" 1.2E-38" 3.4E+38" 6-9"

double" 11" 52" 2.2E-308" 1.8E+308" 15-17"

Introduction	

 9/15/12	

Programming techniques	

 19	

Converting to/from IEEE representation	

 Sign"
 Positive: 0, Negative: 1"

 Mantissa"
 Left shifted until leftmost digit is 1, other digits are stored"

 Exponent"
 Half of the range (127 for float, 1023 for double) is added"

Floating point arithmetic	

 Truncation can happen because of finite precision"

 Machine precision e is smallest number such that 1+ e ≠1"
 Exercise: calculate e for float, double and long double on your

machine"

 Be very careful about roundoff"
 For example: sum numbers starting from smallest to largest"
 See examples provided"

"

1.00000"
0.0000123"
1.00001"

Introduction	

 9/15/12	

Programming techniques	

 20	

Implementation-specific properties of numeric types	

  defined in header <limits>"
  numeric_limits<T>::is_specialized // is true if information available"
  most important values for integral types"

  numeric_limits<T>::min() // minimum (largest negative)"
  numeric_limits<T>::max() // maximum"
  numeric_limits<T>::digits // number of bits (digits base 2)"
  numeric_limits<T>::digits10 // number of decimal digits "
  and more: is_signed, is_integer, is_exact, ..."

  most important values for floating point types"
  numeric_limits<T>::min() // minimum (smallest nonzero positive)"
  numeric_limits<T>::max() // maximum"
  numeric_limits<T>::digits // number of bits (digits base 2)"
  numeric_limits<T>::digits10 // number of decimal digits "
  numeric_limits<T>::epsilon() // the floating point precision"
  and more: min_exponent, max_exponent, min_exponent10, max_exponent10,

is_integer, is_exact"
  first example of templates, use by replacing T above by the desired type:

std::numeric_limits<double>::epsilon()"

A more useful program	

#include <iostream>

#include <cmath>
using namespace std;

int main()

{

 cout << “Enter a number:\n”;
 double x;
 cin >> x;

 cout << “The square root of “
<< x << “ is ”

 << sqrt(x) << “\n”;
 return 0;

}

"
"
"
"
"
  a variable named ‘x’ of type

‘double’ is declared"
  a double value is read and

assigned to x"
  The square root is printed"

Introduction	

 9/15/12	

Programming techniques	

 21	

Variable declarations	

 have the syntax: type variablelist;
 double x;
 int i,j,k; // multiple variables possible"
 bool flag;

 can appear anywhere in the program"
int main() {

…

double x;
}"

 can have initializers, can be constants"
 int i=0; // C-style initializer
 double r(2.5); // C++-style constructor
 const double pi=3.1415927;

Advanced types	

 Enumerators are integer which take values only from a certain set"
enum trafficlight {red, orange, green};

enum occupation {empty=0, up=1, down=2, updown=3};
trafficlight light=green;

 Arrays of size n"
int i[10]; double vec[100]; float matrix[10][10];

 indices run from 0 … n-1! (FORTRAN: 1…n)"
 last index changes fastest (opposite to FORTRAN)"
 Should not be used in C++ anymore!!!"

 Complex types can be given a new name"
typedef double[10] vector10;
vector10 v={0,1,4,9,16,25,36,49,64,81};
vector10 mat[10]; // actually a matrix!"

Introduction	

 9/15/12	

Programming techniques	

 22	

Expressions and operators	

  Arithmetic"
 multiplication: a * b"
 division: a / b"
  remainder: a % b"
 addition: a + b"
 subtraction: a - b"
 negation: -a
"

  Increment and decrement"
 pre-increment: ++a"
 post-increment: a++"
 pre-decrement: --a"
 post-decrement: a--
"

  Logical (result bool)"
  logical not: !a"
  less than: a < b"
  less than or equal: a <= b"
 greater than: a > b"
 greater than or equal: a >= b"
 equality: a == b"
  inequality: a != b"
  logical and: a && b"
  logical or: a || b"

  Conditional: a ? b : c"
  Assignment: a = b"

Bitwise operations	

  Bit operations"
 bitwise not: ~a"

  inverts all bits"

  left shift: a << n"
  shifts all bits to higher positions, fills

with zeros, discards highest"
  right shift: a >> n"

  shifts to lower positions"

 bitwise and: a & b"
 bitwise xor: a ^ b"
 bitwise or: a | b"

  The bitset class implements
more functions. We will use it
later in one of the exercises."

  Interested students should refer
to the recommended C++ books"

  The shift operators have been
redefined for I/O streams:"
 cin >> x;"
 cout << “Hello\n”;  
"

  The same can be done for all
new types: 
“operator overloading”"

  Example: matrix operations"
 A+B"
 A-B"
 A*B"

Introduction	

 9/15/12	

Programming techniques	

 23	

Compound assignments	

  a *= b
  a /= b
  a %= b
  a += b
  a -= b
  a <<= b
  a >>= b
  a &= b
  a ^= b
  a |= b

  a += b equivalent to a=a+b
"

  allow for simpler codes and better
optimizations"

Special operators	

  scope operators: ::"
 member selectors"

 ."
 ->"

  subscript []"
  function call ()"
  construction ()"
  typeid"
  casts"

 const_cast
 dynamic_cast
 reinterpret_cast
 static_cast

  sizeof
  new
  delete
  delete[]
  pointer to member select"

 .*
 ->*

  throw
  comma ,  

"
  all these will be discussed later"

Introduction	

 9/15/12	

Programming techniques	

 24	

Operator precedences	

 Are listed in detail in all reference books or look at 
http://www.cppreference.com/operator_precedence.html "

 Arithmetic operators follow usual rules"
 a+b*c is the same as a+(b*c)

 Otherwise, when in doubt use parentheses"

Statements	

 simple statements"

 ; // null statement"
 int x; // declaration statement"
 typedef int index_type; // type definition"
 cout << “Hello world”; // all simple statements end with ;"

 compound statements"
 more than one statement, enclosed in curly braces"
"{

 int x;

 cin >> x;
 cout << x*x;

 }

Introduction	

 9/15/12	

Programming techniques	

 25	

The if statement	

  Has the form"
if (condition)
 statement"

  or"
if (condition)
 statement

else
 statement"

  can be chained"
if (condition)
 statement
else if(condition)
 statement

else
 statement"

  Example:"
if (light == red)
 cout << “STOP!”;
else if (light == orange)

 cout << “Attention”;
else {

 cout << “Go!”;
}

The switch statement	

  can be used instead of deeply
nested if statements:"
switch (light) {

 case red:
 cout << “STOP!”;
 break;
 case orange:
 cout << “Attention”;
 break;
 case green:
 cout << “Go!”;
 go();
 break;
 default:
 cerr << “illegal color”;
 abort();
}

  do not forget the break!"
  always include a default!"

  the telephone system of the US
east coast was once disrupted
completely for several hours
because of a missing default!"

  also multiple labels possible:"
switch(ch) {

 case ‘a’:
 case ‘e’:
 case ‘i’:
 case ‘o’:
 case ‘u’:
 cout << “vowel”;

 default:

 cout << “other character”;  
}"

Introduction	

 9/15/12	

Programming techniques	

 26	

The for loop statement	

 has the form 
for (init-statement ; condition ; expression)

 statement

 example:"
 for (int i=0;i<10;++i)
 cout << i << “\n”;

 can contain more than one statement in for(;;), but this is very bad
style!"
 double f;
int k;
for (k=1,f=1 ; k<50 ; ++k, f*=k)
 cout << k << “! = “ << f<< “\n”;

The while statement	

  is a simpler form of a loop: 
while (condition)
 statement

 example:"
while (trafficlight()==red) { 

 cout << “Still waiting\n”; 
 " sleep(1); 
} 
"

Introduction	

 9/15/12	

Programming techniques	

 27	

The do-while statement	

  is similar to the while statement 
do
 statement
while (condition);
"

 Example  
 
do {
 cout << “Working\n”;
 work();
} while (work_to_do());

The break and continue statements	

 break ends the loop immediately and jumps to the next statement
following the loop"

 continue starts the next iteration immediately"
 An example:"

while (true) {
 if (light()==red)

 continue;

 start_engine();

 if(light()==orange)

 continue;
 drive_off();

 break;

}

Introduction	

 9/15/12	

Programming techniques	

 28	

A loop example: what is wrong?	

 #include <iostream>
using namespace std;
int main()
{
 cout << “Enter a number: “;
 unsigned int n;
 cin >> n;

 for (int i=1;i<=n;++i)
 cout << i << "\n";

 int i=0;
 while (i<n)
 cout << ++i << "\n";

 i=1;
 do
 cout << i++ << "\n";
 while (i<=n);

 i=1;
 while (true) {

 if(i>n)
 break;
 cout << i++ << "\n";
 }
}

The goto statement	

 will not be discussed as it should not be used  
"

  included only for machine produced codes, 
 e.g. FORTRAN -> C translators  
"

 can always be replaced by one of the other control structures 
"

 we will not allow any goto in the exercises! "

Introduction	

 9/15/12	

Programming techniques	

 29	

Static memory allocation	

  Declared variables are assigned
to memory locations"

int x=3;

int y=0;"

  The variable name is a symbolic
reference to the contents of some
real memory location"
  It only exists for the compiler"
 No real existence in the computer"

0

4

8

12

16

20

24

28

3

0

x

y

address contents name

Pointers	

  Pointers store the address of a memory location"
 are denoted by a * in front of the name"
int *p; // pointer to an integer"

 Are initialized using the & operator"
int i=3;

p =&i; // & takes the address of a variable"
 "
 Are dereferenced with the * operator"
*p = 1; // sets i=1  
"

 Can be dangerous to use"
"p = 1; // sets p=1: danger! 
*p = 258; // now messes up everything, can crash"

"
  Take care: int *p; does not allocate memory!"

0

4

8

12

16

20

24

28

address contents name

28913	

 p	

3	

 i	

4	

1	

1	

16777216	

2	

Introduction	

 9/15/12	

Programming techniques	

 30	

Dynamic allocation	

  Automatic allocation"
 float x[10]; // allocates memory for 10 numbers"

  Allocation of flexible size"
 unsigned int n; cin >> n; float x[n]; // will not work"
 The compiler has to know the number!"

  Solution: dynamic allocation"
 float *x=new float[n]; // allocate some memory for an array"
 x[0]=…;… // do some work with the array x"
 delete[] x; // delete the memory for the array. x[i], *x now undefined!"

  Don’t confuse "
 delete, used for simple variables "
 delete[], used for arrays"

Pointer arithmetic	

  for any pointer T *p; the following holds:"
 p[n] is the same as *(p+n);

 Adding and integer n to a pointer increments it by the n times the
size of the type – and not by n bytes"

  Increment ++ and decrement -- increase/decrease by one element"

 Be sure to only use valid pointers"
 initialize them"
 do not use them after the object has been deleted!"
 catastrophic errors otherwise"

Introduction	

 9/15/12	

Programming techniques	

 31	

Arrays and pointers	

  are very similar, but subtly different! 
 
int array[5];

for (int i=0;i < 5; ++i)
 array[i]=i;

int* p = array; // same as &array[0] 
for (int i=0;i < 5; ++i)
 cout << *p++;

delete[] p; // will crash  
array=0; // will not compile
p=0; // is OK

  see these examples! 
 
int* pointer=new int[5];

for (int i=0;i < 5; ++i)
 pointer[i]=i;

int* p = pointer;
for (int i=0;i < 5; ++i)
 cout << *p++;

  p=pointer;
delete[] p; // is OK
delete[] pointer; // crash
delete[] p; // will crash
p=0; // is OK
pointer=0; // is OK"

A look at memory: array example	

  Array example  
 
int array[5];

for (int i=0;i < 5; ++i)
 array[i]=i;

int* p = array; // same as &array[0] 
for (int i=0;i < 5; ++i)
 cout << *p++;

delete[] p; // will crash  
array=0; // will not compile
p=0; // is OK

0

4

8

12

16

20

24

28

address contents name

a[0]

a[1]

a[2]

a[3]

a[4]

p0

0

1

2

3

4

Introduction	

 9/15/12	

Programming techniques	

 32	

A look at memory: pointer example	

  Array example  
 
int* pointer=new int[5];

for (int i=0;i < 5; ++i)
 pointer[i]=i;

int* p = pointer;
for (int i=0;i < 5; ++i)
 cout << *p++;

delete[] pointer; // is OK
delete[] pointer; // crash
delete[] p; // will crash
p=0; // is OK
pointer=0; // is OK"

0

4

8

12

16

20

24

28

address contents name

pointer

p

12

12

0

1

2

3

4

References	

 are aliases for other variables: 
"
float very_long_variabe_name_for_number=0;

float &x=very_long_variabe_name_for_number;
// x refers to the same memory location  
"

x=5; // sets very_long_variabe_name_for_number to 5; 
"

float y=2;

x=y; // sets very_long_variabe_name_for_number to 2;"
 // does not set x to refer to y!"

Introduction	

 9/15/12	

Programming techniques	

 33	

A more flexible program: function calls	

#include <iostream>

using namespace std;

float square(float x) {

 return x*x;

}

int main() {

 cout << “Enter a number:\n”;
 float x;

 cin >> x;

 cout << x << “ “ <<
square(x) << “\n”;

 return 0;

}

"

  a function “square” is defined"
  return value is float"
 parameter x is float  
 
 
 
 
 
 
 
"

  and used in the program"

Function call syntax	

  syntax:"
returntype functionname

(parameters)"
{ "
 functionbody"
}"
  returntype is “void” if there is no

return value:"
void error(char[] msg) {
 cerr << msg << “\n”;
} "

"

  There are several kinds of
parameters:"
 pass by value"
 pass by reference"
 pass by const reference"
 pass by pointer 
 
"

  Advanced topics to be discussed
later:"
  inline functions"
 default arguments"
  function overloading"
  template functions"

Introduction	

 9/15/12	

Programming techniques	

 34	

Pass by value	

 The variable in the function is a copy of the variable in the calling
program:"
void f(int x) {

 x++; // increments x but not the variable of the calling program"
 cout << x;

}

int main() {

 int a=1;

 f(a);

 cout << a; // is still 1
}

 Copying of variables time consuming for large objects like matrices"

Pass by reference	

 The function parameter is an alias for the original variable:"
void increment(int& n) {

 n++;

}

int main() {

 int x=1; increment(x); // x now 2
 increment(5); // will not compile since 5 is literal constant!
}"
"

 avoids copying of large objects:"
 vector eigenvalues(Matrix &A);"

 but allows unwanted modifications!"
 the matrix A might be changed by the call to eigenvalues!"

Introduction	

 9/15/12	

Programming techniques	

 35	

Pass by const reference	

 Problem: "
 vector eigenvalues(Matrix& A); // allows modification of A"
 vector eigenvalues(Matrix A); // involves copying of A 
"

 how do we avoid copying and prohibit modification?"
 vector eigenvalues (Matrix const &A);"
 now a reference is passed -> no copying"
 the parameter is const -> cannot be modified"

Pass by pointer	

 Another method to pass an object without copying is to pass its
address"

 Used mostly in C  
"

 vector eigenvalues(Matrix *m);
"

 disadvantages:"
 The parameter must always be dereferenced: *m;"
 In the function call the address has to be taken: 
 
Matrix A;
cout << eigenvalues(&A);
"

  rarely needed in C++"

Introduction	

 9/15/12	

Programming techniques	

 36	

A swap example	

  Five examples for swapping number"
  void swap1 (int a, int b) { int t=a; a=b; b=t; }
  void swap2 (int& a, int& b) { int t=a; a=b; b=t;}
  void swap3 (int const & a, int const & b)

{ int t=a; a=b; b=t;}
  void swap4 (int *a, int *b) { int *t=a; a=b; b=t;}
  void swap5 (int* a, int* b) {int t=*a; *a=*b; *b=t;}

 Which will compile?"
 What is the effect of:"

  int a=1; int b=2; swap1(a,b); cout << a << " " << b << "\n";
  int a=1; int b=2; swap2(a,b); cout << a << " " << b << "\n";
  int a=1; int b=2; swap3(a,b); cout << a << " " << b << "\n";
  int a=1; int b=2; swap4(&a,&b); cout << a << " " << b << "\n";
  int a=1; int b=2; swap5(&a,&b); cout << a << " " << b << "\n";

"

Type casts	

  Variables can be converted (cast) from one type to another"

  static_cast converts one type to another, using the best defined
conversion, e.g."
 float y=3.f;
 int x = static_cast<int>(y);"
  replaces the C construct int x= (int) y;

  reinterpret_cast converts one pointer type to another, but only
useful for low-level programming"
 float y=3.f;
 float *fp = &y;
 int *ip = reinterpret_cast<int*>(fp)
 std::cout << *ip;"

"

Introduction	

 9/15/12	

Programming techniques	

 37	

Type casts (continued)	

  const_cast can be used to remove const-ness from a variable"
 Example: need to pass a double* to a C-style function which does not

change the value, but I only have a const double*  
 
void legacy_c_function (double* d);

void foo(const double* d) {
 // remove the const
 double* nonconst_d = const_cast<double*>(d);
 // now call the function
 legacy_c_function(nonconst_d);
 }

 Use it very sparingly. Usually the need for const_cast is a sign of bad
software design "

 Other casts to be discussed later:"
 dynamic_cast
 boost::lexical_cast
 boost::numeric_cast"

Namespaces	

 What if a square function is
already defined elsewhere?"

  C-style solution: give it a unique
name; ugly and hard to type"
float ETH_square(float);"

  Elegant C++ solution:
namespaces"
 Encapsulates all declarations in a

modul, called “namespace”,
identified by a prefix"

 Example: 
namespace ETH
{
 float square(float);
}"

  Namespaces can be nested"

  Can be accessed from outside
as:"
 ETH::square(5);
 using ETH::square;

square(5);
 using namespace ETH;

square(5);

  Standard namespace is std

  For backward compatibility the
standard headers ending in .h
import std into the global
namespace. E.g. the file
“iostream.h” is:"
#include <iostream>
using namespace std;"

