Sheet IX

Due: week of December 10

The present exercise sheet deals with decay properties of the solution of the scalar wave equation

$$
\begin{equation*}
\square \phi=-4 \pi \rho \tag{1}
\end{equation*}
$$

with trivial initial data, i.e.

$$
\begin{equation*}
\left.\phi\right|_{t=t_{0}}=\left.\frac{\partial \phi}{\partial t}\right|_{t=t_{0}}=0 \tag{2}
\end{equation*}
$$

in the limit $t_{0} \rightarrow-\infty$. We assume ρ to have compact spatial support. The solution is given by the full retarded integral

$$
\begin{equation*}
\phi(t, x)=\int_{C^{-}(t, x)} \frac{\rho\left(t^{\prime}, x^{\prime}\right)}{\left|x-x^{\prime}\right|} d^{3} x^{\prime} \tag{3}
\end{equation*}
$$

where $C^{-}(t, x)$ denotes the past light cone with vertex at (t, x). In the following, a limit of the form

$$
\begin{equation*}
\lim _{(u, \xi) ; r \rightarrow \infty} \tag{4}
\end{equation*}
$$

will mean taking the limit as $r \rightarrow \infty$ along a generator of the future light cone C_{u}^{+}, the generator being given by $\xi \in S^{2}$. We define

$$
\begin{equation*}
\Phi(u, \xi):=\lim _{(u, \xi) ; r \rightarrow \infty} r \phi \tag{5}
\end{equation*}
$$

Recall from the lecture that

$$
\begin{equation*}
\Phi(u, \xi)=\int_{P(u, \xi)} \rho=\int_{\mathbb{R}^{3}} \rho\left(u+\xi \cdot x^{\prime}, x^{\prime}\right) d^{3} x^{\prime}, \tag{6}
\end{equation*}
$$

where $P(u, \xi)$ is the null hyperplane given by

$$
\begin{equation*}
P(u, \xi):=\left\{\left(t^{\prime}, x^{\prime}\right): t^{\prime}=u+\xi \cdot x^{\prime}, x^{\prime} \in \mathbb{R}^{3}\right\} . \tag{7}
\end{equation*}
$$

Question 1 [Tangential decay]: Show that

$$
\begin{equation*}
\lim _{(u, \xi) ; r \rightarrow \infty} r \Omega_{i} \phi=\Omega_{i} \Phi, \tag{8}
\end{equation*}
$$

where $\Omega_{i}(i=1,2,3)$ are the rotation fields given by

$$
\begin{equation*}
\Omega_{i}:=\varepsilon_{i j k} x^{j} \frac{\partial}{\partial x^{k}} . \tag{9}
\end{equation*}
$$

Hints:
(i) Use polar coordinates (θ, φ) on S^{2} such that

$$
\begin{equation*}
\xi^{1}=\sin \theta \cos \varphi, \quad \xi^{2}=\sin \theta \sin \varphi, \quad \xi^{3}=\cos \theta \tag{10}
\end{equation*}
$$

and arrange the coordinate axes in such a way that

$$
\begin{equation*}
\Omega_{3}=\frac{\partial}{\partial \varphi}=x^{1} \frac{\partial}{\partial x^{2}}-x^{2} \frac{\partial}{\partial x^{1}} . \tag{11}
\end{equation*}
$$

In this setting it suffices to show that

$$
\begin{equation*}
\lim _{(u, \xi) ; r \rightarrow \infty} r \Omega_{3} \phi=\frac{\partial \Phi}{\partial \varphi} . \tag{12}
\end{equation*}
$$

(ii) To show (12) make use of the commutation relation $\left[\Omega_{i}, \square\right]=0$ together with (1), (3), (5) and (6) with $\Omega_{3} \phi$ in the role of ϕ to show that

$$
\begin{equation*}
\lim _{(u, \xi) ; r \rightarrow \infty} r \Omega_{3} \phi=\int_{P(u, \xi)} \Omega_{3} \rho . \tag{13}
\end{equation*}
$$

Question 2 [Longitudinal decay]: Show that

$$
\begin{equation*}
\lim _{(u, \xi) ; r \rightarrow \infty} r^{2} L \phi=-\Phi \tag{14}
\end{equation*}
$$

Hints:
(i) Compute the commutator $[S, \square]$, where S is the scaling field

$$
\begin{equation*}
S:=x^{\mu} \frac{\partial}{\partial x^{\mu}} . \tag{15}
\end{equation*}
$$

Use the result together with (1), (3), (5) and (6) with $S \phi$ in the role of ϕ to show that

$$
\begin{equation*}
\lim _{(u, \xi) ; r \rightarrow \infty} r S \phi=\int_{P(u, \xi)}(S \rho+2 \rho) \tag{16}
\end{equation*}
$$

(ii) Show that

$$
\begin{equation*}
x^{\prime i} \frac{\partial}{\partial x^{\prime i}} \rho\left(u+\xi \cdot x^{\prime}, x^{\prime}\right)=\left(t \frac{\partial \rho}{\partial t}+x^{i} \frac{\partial \rho}{\partial x^{i}}\right)\left(u+\xi \cdot x^{\prime}, x^{\prime}\right)-u \frac{\partial \rho}{\partial t}\left(u+\xi \cdot x^{\prime}, x^{\prime}\right) . \tag{17}
\end{equation*}
$$

Integrate (17) on \mathbb{R}^{3} to show that (16) is equal to

$$
\begin{equation*}
-\Phi+u \frac{\partial \Phi}{\partial u} . \tag{18}
\end{equation*}
$$

(iii) Show that

$$
\begin{equation*}
S=\frac{1}{2}(u \underline{L}+v L) \tag{19}
\end{equation*}
$$

and use (see the lecture)

$$
\begin{equation*}
\lim _{(u, \xi) ; r \rightarrow \infty} r L \phi=0, \quad \lim _{(u, \xi) ; r \rightarrow \infty} r \underline{L} \phi=2 \frac{\partial \Phi}{\partial u} \tag{20}
\end{equation*}
$$

together with $u=t-r, v=t+r$ to show (14).

