Sheet VIII
 Due: week of December 3

Both questions deal with the first post-Newtonian approximation.
Question 1 [Lie derivative of the metric]: For the definition of V, x, X and e see the part of the lecture dealing with the first post-Newtonian approximation. Let

$$
\begin{equation*}
v^{i}=V^{a} \frac{\partial x^{i}}{\partial X^{a}} \tag{1}
\end{equation*}
$$

(i) From

$$
\begin{equation*}
e_{i j}=\frac{\partial X^{a}}{\partial x^{i}} \frac{\partial X^{b}}{\partial x^{j}} \delta_{a b} \tag{2}
\end{equation*}
$$

deduce that

$$
\begin{equation*}
\frac{\partial e_{i j}}{\partial t}=v^{k} \frac{\partial e_{i j}}{\partial x^{k}}+e_{k j} \frac{\partial v^{k}}{\partial x^{i}}+e_{i k} \frac{\partial v^{k}}{\partial x^{j}} \tag{3}
\end{equation*}
$$

(ii) Show that (3) coincides with the Lie derivative of e given by

$$
\begin{equation*}
\left(\mathcal{L}_{v} e\right)_{i j}(x):=\left.\frac{d}{d s}\left(f_{s}^{*} e\right)_{i j}(x)\right|_{s=0} \tag{4}
\end{equation*}
$$

where $f_{s}^{*} e$ is the pullback of the metric e given by

$$
\begin{equation*}
\left(f_{s}^{*} e\right)_{i j}(x)=\frac{\partial f_{s}^{m}}{\partial x^{i}}(x) \frac{\partial f_{s}^{n}}{\partial x^{j}}(x) e_{m n}\left(f_{s}(x)\right) \tag{5}
\end{equation*}
$$

and f_{s} is the flow of the vectorfield v, i.e. for $x_{0} \in \mathbb{R}^{3}$ we define $f_{s}^{m}\left(x_{0}\right):=x^{m}(s)$ where $x(s)$ satisfies

$$
\begin{equation*}
\frac{d x^{i}}{d s}=v^{i}(x),\left.\quad x^{i}\right|_{s=0}=x_{0}^{i} \tag{6}
\end{equation*}
$$

Question 2 [Cross term in the metric]: As in the lecture we denote by ρ the energy density and by p the momentum density. We assume that

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}=0, \quad \operatorname{supp} \rho=\Omega \tag{7}
\end{equation*}
$$

for some $\Omega \subset \subset \mathbb{R}^{3}$. Show that to leading order in $1 / r$, where $r:=\sqrt{\sum_{i=1}^{3}\left(x^{i}\right)^{2}}$, the cross term in the metric of the first post-Newtonian approximation can be expressed by

$$
\begin{equation*}
-\frac{4 G L}{c^{2} r} \sin ^{2} \theta d t d \phi \tag{8}
\end{equation*}
$$

where L is the total angular momentum defined by

$$
\begin{equation*}
L^{k}:=\int_{\Omega} \varepsilon^{k}{ }_{i j} x^{i} p^{j} d^{3} x \tag{9}
\end{equation*}
$$

and r, θ and ϕ denote the usual spherical coordinates. Furthermore, the x^{3}-axis is chosen in the direction of L.

Hints:
(i) Use the equation of continuity and integrate

$$
\begin{equation*}
\frac{\partial}{\partial x^{j}}\left(x^{i} p^{j}\right) \tag{10}
\end{equation*}
$$

over Ω^{\prime}, where $\Omega^{\prime} \supset \bar{\Omega}$, to show that the total momentum vanishes, i.e.

$$
\begin{equation*}
P^{i}:=\int_{\Omega} p^{i} d^{3} x=0 \tag{11}
\end{equation*}
$$

(ii) Now use

$$
\begin{equation*}
\alpha_{i}(x)=\frac{G}{2} \int_{\Omega}\left[\frac{7 \delta_{i j}}{\left|x-x^{\prime}\right|}+\frac{\left(x^{i}-x^{\prime i}\right)\left(x^{j}-x^{\prime j}\right)}{\left|x-x^{\prime}\right|^{3}}\right] p^{j}\left(x^{\prime}\right) d^{3} x^{\prime} \tag{12}
\end{equation*}
$$

together with (11) to show that α vanishes to first order in $1 / r$.
(iii) Define $N^{i}:=x^{i} / r$ and show that to leading order in $1 / r$

$$
\begin{equation*}
\frac{1}{\left|x-x^{\prime}\right|}=\frac{1}{r}\left(1+\frac{N \cdot x^{\prime}}{r}\right) . \tag{13}
\end{equation*}
$$

(iv) Define

$$
\begin{equation*}
D^{i j}:=\int_{\Omega} x^{i} p^{j} d^{3} x \tag{14}
\end{equation*}
$$

and integrate

$$
\begin{equation*}
\frac{\partial}{\partial x^{j}}\left(x^{i} x^{k} p^{j}\right) \tag{15}
\end{equation*}
$$

over Ω^{\prime} to show that

$$
\begin{equation*}
D^{k i}+D^{i k}=0 \tag{16}
\end{equation*}
$$

and furthermore

$$
\begin{equation*}
D^{i j}=\frac{1}{2} \varepsilon^{i j}{ }_{k} L^{k} . \tag{17}
\end{equation*}
$$

(v) Use (13), (16) and (17) in (12) to show that to leading order in $1 / r$

$$
\begin{equation*}
\alpha_{i}=\frac{2 G}{r^{2}} \varepsilon_{i j k} L^{j} N^{k} . \tag{18}
\end{equation*}
$$

(vi) From the lecture we know that the cross term in the metric is given by

$$
\begin{equation*}
-\frac{2}{c^{2}} \alpha_{i} d t d x^{i} \tag{19}
\end{equation*}
$$

Take the x^{3}-axis in the direction of L and introduce standard spherical coordinates r, θ and ϕ to show the result.

