GENERAL RELATIVITY — HS 12 — ProF. D. CHRISTODOULOU

Sheet VIII

Due: week of December 3

Both questions deal with the first post-Newtonian approximation.

Question 1 [Lie derivative of the metric |: For the definition of V', 2, X and e see the
part of the lecture dealing with the first post-Newtonian approximation. Let
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(ii) Show that (3) coincides with the Lie derivative of e given by
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where fZe is the pullback of the metric e given by
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and f, is the flow of the vectorfield v, i.e. for g € R® we define f™(xq) := z™(s)
where z(s) satisfies

Question 2 [Cross term in the metric |: As in the lecture we denote by p the energy
density and by p the momentum density. We assume that
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for some © CC R?. Show that to leading order in 1/7, where r := /327 (21)2, the cross
term in the metric of the first post-Newtonian approximation can be expressed by
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where L is the total angular momentum defined by
LF = /Qakijxipjd% (9)

and 7, # and ¢ denote the usual spherical coordinates. Furthermore, the x*-axis is chosen
in the direction of L.

Hints:
(i) Use the equation of continuity and integrate
9, ;.
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over V', where ' O €, to show that the total momentum vanishes, i.e.
P = /pid?’x = 0. (11)
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(ii)) Now use
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together with (11) to show that « vanishes to first order in 1/r.
(iii) Define N := z'/r and show that to leading order in 1/r
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(iv) Define
DY .= / o'y dx (14)
Q
and integrate
37 o) (15)
over €’ to show that
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and furthermore
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(v) Use (13), (16) and (17) in (12) to show that to leading order in 1/
2G A
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(vi) From the lecture we know that the cross term in the metric is given by
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Take the z3-axis in the direction of L and introduce standard spherical coordinates
r, @ and ¢ to show the result.



