Sheet VII

Due: week of November 26

Question 1 [Energy-momentum-stress tensor for electromagnetic field]:

(i) Derive the energy-momentum-stress tensor for the electromagnetic field

$$T_{E}^{\mu\nu} = \frac{1}{4\pi} \left(F^{\mu\alpha} F^{\nu}_{\ \alpha} - \frac{1}{4} (g^{-1})^{\mu\nu} F_{\alpha\beta} F^{\alpha\beta} \right), \tag{1}$$

where $F_{\mu\nu}$ is the electromagnetic field strength tensor. Hint: Use the definition

$$\frac{\partial}{\partial g_{\mu\nu}} (L_E \, d\mu_g) = -\frac{1}{2} T_E^{\mu\nu} \, d\mu_g, \tag{2}$$

where L_E is the electromagnetic Lagrangian

$$L_E = \frac{1}{16\pi} F^{\alpha\beta} F_{\alpha\beta} \tag{3}$$

and $d\mu_g$ is the volume element

$$d\mu_g = \sqrt{-\det g} \, d^4 x. \tag{4}$$

(ii) Let now

$$T^{\mu\nu} = T^{\mu\nu}_M + T^{\mu\nu}_E, \tag{5}$$

where T_M is the energy-momentum-stress tensor of matter. Use $\nabla_{\nu} T^{\mu\nu} = 0$ and the definition of the spacetime force f^{μ}

$$f^{\mu} := \nabla_{\nu} T_M^{\mu\nu} \tag{6}$$

to show that

$$f^{\mu} = F^{\mu}_{\ \nu} J^{\nu},\tag{7}$$

where J^{μ} is the spacetime current. Now restrict to Minkowski spacetime. Find the time component f^0 and space components f^i in terms of E^i , B^i , ρ and J^i , where E^i is the electric field, B^i is the magnetic field, J^i is the electric current and ρ is the charge density.

Hint: Use Maxwell's equations

$$\nabla_{\nu}F^{\mu\nu} = 4\pi J^{\mu}.\tag{8}$$

Question 2 [*Geodesics in 3+1 formulation*]: The geodesic equation can be derived as critical points of the action

$$L = \int_{a}^{b} \sqrt{-g_{\mu\nu}} \frac{dx^{\mu}}{d\lambda} \frac{dx^{\nu}}{d\lambda} d\lambda.$$
(9)

Suppose we use a maximal time function t as the parameter for the geodesic, i.e. $\lambda = t$. Show that in the limit as $c \to \infty$, up to addition of a constant and multiplication with a constant, (9) becomes the action of a particle of unit mass in the gravitational field with potential ψ .

Hint: The metric is given by

$$g_{\mu\nu}dx^{\mu}dx^{\nu} = -c^2\phi^2 dt^2 + \overline{g}_{ij}dx^i dx^j, \qquad (10)$$

where

$$\phi = 1 + c^{-2}\psi + \dots, \qquad \overline{g}_{ij} = \delta_{ij} + \dots \tag{11}$$

and ... denotes higher order terms.

Question 3 [Kasner metric]: We look at the Kasner metric

$$g = -dt^2 + \overline{g},\tag{12}$$

where

$$\overline{g} = \sum_{i=1}^{3} t^{2p_i} (dx^i)^2 \tag{13}$$

and t is the temporal distance function from a given spacelike hypersurface

$$(g^{-1})^{\mu\nu}\partial_{\mu}t\partial_{\nu}t = -1.$$
(14)

- (i) Calculate the components of the second fundamental form k_{ij} .
- (ii) Calculate the components of the Ricci tensor \overline{R}_{ij} .
- (iii) Show that (12) is a vacuum solution of the Einstein field equations if and only if

$$\sum_{i=1}^{3} p_i = \sum_{i=1}^{3} p_i^2 = 1.$$
(15)

Hint: Use the Einstein field equations in 3+1 form once we chose a foliation of the level sets of the temporal distance function.

Question 4 [Scalar curvature of maximal hypersurface]: Suppose we have a maximal foliation. Look at the scalar curvature of a maximal hypersurface. Show that $\overline{R} \ge 0$ with $\overline{R} = 0$ at a point if and only if $k_{ij} = 0$ and $\rho = 0$ at this point.