Swiss Federal Institute of Technology Zurich

Dissipation in
 Quantum Systems
 Exercise 2

HS 12
Dr. R. Chitra

In Exercise 1 we saw that the Langevin equation is a powerful tool for the investigation a particle moving in a fluid by using a stochastic function $\xi(t)$, a microscopic quantity. However, there is another access to the problem based on macroscopic terminology, the Fokker-Planck equation.
Given a probability distribution $P\left(x_{0}, t_{0}\right)$ for the location of a single particle at $t=t_{0}$, the Fokker-Planck equation determines the evolution of $P(x, t)$ for $t>t_{0}$. A simple version of the Fokker-Planck equation is given by

$$
\begin{equation*}
\frac{\partial}{\partial t} P(x, t)=-\frac{\partial}{\partial x}[A(x, t) P(x, t)]+\frac{\partial^{2}}{\partial x^{2}}[B(x, t) P(x, t)] \tag{1}
\end{equation*}
$$

where $A(x, t)$ is denoted as the drift term and $B(x, t)$ is the diffusion term. In the following, we want to derive it for a simple model.

Exercise 2.1 Random Walk

We want to derive the Fokker-Planck equation and its solution for a simple model, the socalled random-walk model. This model consists of a particle moving in a (for simplicity) one dimensional lattice $\left(x_{i+1}-x_{i}=a\right)$ and in discrete time steps $t_{j}\left(t_{j+1}-t_{j}=\tau\right)$. At each time step the particle can hop with equal probability $p_{\rightarrow}=p_{\leftarrow}=p=1 / 2$ either to the left hand or to the right hand side, see Fig. 1.

Figure 1: Hopping of a particle from x_{i} to x_{i-1} with probability p_{\leftarrow} or to x_{i+1} with p_{\rightarrow}.
The probability distribution $P\left(x_{i}, t_{j} ; x_{0}, t_{0}\right)$ of the particle satisfies the conditions

$$
\begin{align*}
P\left(x_{i}, t_{0} ; x_{0}, t_{0}\right) & =\delta_{x_{i}, x_{0}} \tag{2}\\
\sum_{x_{i}} P\left(x_{i}, t_{j} ; x_{0}, t_{0}\right) & =1 \tag{3}
\end{align*}
$$

where Eq. (2) fixes the initial condition at $t_{j}=t_{0}$ and Eq. (3) is due to particle number conservation.
It is not hard to see that the time evolution is given by

$$
\begin{align*}
P\left(x_{i}, t_{j}+\tau ; x_{0}, t_{0}\right) & =P\left(x_{i-1}, t_{j} ; x_{0}, t_{0}\right) \cdot p_{\rightarrow}+P\left(x_{i+1}, t_{j} ; x_{0}, t_{0}\right) \cdot p_{\leftarrow} \\
& =\frac{1}{2}\left(P\left(x_{i-1}, t_{j} ; x_{0}, t_{0}\right)+P\left(x_{i+1}, t_{j} ; x_{0}, t_{0}\right)\right) . \tag{4}
\end{align*}
$$

a) Verify that P fulfills the equation

$$
\begin{equation*}
\left[\partial_{t}^{\tau}-\frac{a^{2}}{2 \tau} \Delta_{a}\right] P\left(x_{i}, t_{j} ; x_{0}, t_{0}\right)=0 \tag{5}
\end{equation*}
$$

where the operators ∂_{t}^{τ} and Δ_{a} are defined as

$$
\begin{align*}
\partial_{t}^{\tau} f\left(x_{i}, t_{j} ; \ldots\right) & =\frac{f\left(x_{i}, t_{j+1} ; \ldots\right)-f\left(x_{i}, t_{j} ; \ldots\right)}{\tau} \tag{6}\\
\Delta_{a} f\left(x_{i}, t_{j} ; \ldots\right) & =\frac{1}{a^{2}}\left[f\left(x_{i+1}, t_{j} ; \ldots\right)+f\left(x_{i-1}, t_{j} ; \ldots\right)-2 f\left(x_{i}, t_{j} ; \ldots\right)\right] \tag{7}
\end{align*}
$$

b) Show that $P\left(x_{i}, t_{j} ; x_{0}, t_{0}\right)$ is given by

$$
\begin{equation*}
P\left(x_{i}, t_{j} ; x_{0}, t_{0}\right)=\int_{-\pi / a}^{\pi / a} \frac{d k}{2 \pi}(\cos k a)^{t_{j}-t_{0} / \tau} e^{i k\left(x_{i}-x_{0}\right)} \tag{8}
\end{equation*}
$$

by solving Eq. (4).
Hint: Work in Fourier space and use

$$
\begin{equation*}
P\left(x_{i}, t_{j} ; x_{0}, t_{0}\right)=\int_{-\pi / a}^{\pi / a} \frac{d k}{2 \pi} P\left(k, t_{j} ; x_{0}, t_{0}\right) e^{i k x_{i}} \tag{9}
\end{equation*}
$$

where $P\left(k, t_{0} ; x_{0}, t_{0}\right)$ is defined by

$$
\begin{equation*}
P\left(k, t_{j} ; x_{0}, t_{0}\right)=\sum_{x_{i}} P\left(x_{i}, t_{j} ; x_{0}, t_{0}\right) e^{-i k x_{i}} . \tag{10}
\end{equation*}
$$

c) Calculate the continuum limit $(a \rightarrow 0, \tau \rightarrow 0)$ of Eq. (5) and (8) provided that $a^{2} / 2 \tau \equiv D$ is kept constant.
Hint: Expand $\cos x \approx 1-x^{2} / 2$ and use the identity $e^{x}=\lim _{N \rightarrow \infty}(1+x / N)^{N}$.
d) Now let's assume that there is an inbalance in the hopping, i.e. we have $\lambda>0$ such that

$$
\begin{equation*}
p_{\rightarrow}=\frac{1}{2}(1+\lambda), \quad p_{\leftarrow}=\frac{1}{2}(1-\lambda) . \tag{11}
\end{equation*}
$$

Introduce the parameter $c=\gamma a / \tau$ and find the corresponding partial differential equation (in the continuum limit) for this case!
Solve the differential equation using the ansatz

$$
\begin{equation*}
P_{n e w}\left(x, t ; x_{0}, t_{0}\right)=P\left(x-f(t), t ; x_{0}, t_{0}\right) \tag{12}
\end{equation*}
$$

where P is the solution of (c).

