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In Exercise 1 we saw that the Langevin equation is a powerful tool for the investigation
a particle moving in a fluid by using a stochastic function ξ(t), a microscopic quantity.
However, there is another access to the problem based on macroscopic terminology, the
Fokker-Planck equation.
Given a probability distribution P (x0, t0) for the location of a single particle at t = t0, the
Fokker-Planck equation determines the evolution of P (x, t) for t > t0. A simple version
of the Fokker-Planck equation is given by

∂

∂t
P (x, t) = − ∂

∂x
[A(x, t)P (x, t)] +

∂2

∂x2
[B(x, t)P (x, t)] (1)

whereA(x, t) is denoted as the drift term andB(x, t) is the diffusion term. In the following,
we want to derive it for a simple model.

Exercise 2.1 Random Walk

We want to derive the Fokker-Planck equation and its solution for a simple model, the so-
called random-walk model. This model consists of a particle moving in a (for simplicity)
one dimensional lattice (xi+1 − xi = a) and in discrete time steps tj (tj+1 − tj = τ). At
each time step the particle can hop with equal probability p→ = p← = p = 1/2 either to
the left hand or to the right hand side, see Fig. 1.
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Figure 1: Hopping of a particle from xi to xi−1 with probability p← or to xi+1 with p→.

The probability distribution P (xi, tj;x0, t0) of the particle satisfies the conditions

P (xi, t0;x0, t0) = δxi,x0 (2)∑
xi

P (xi, tj;x0, t0) = 1 (3)

where Eq. (2) fixes the initial condition at tj = t0 and Eq. (3) is due to particle number
conservation.
It is not hard to see that the time evolution is given by

P (xi, tj + τ ;x0, t0) = P (xi−1, tj;x0, t0) · p→ + P (xi+1, tj;x0, t0) · p←

=
1

2

(
P (xi−1, tj;x0, t0) + P (xi+1, tj;x0, t0)

)
. (4)



a) Verify that P fulfills the equation[
∂τt −

a2

2τ
∆a

]
P (xi, tj;x0, t0) = 0 (5)

where the operators ∂τt and ∆a are defined as

∂τt f(xi, tj; . . . ) =
f(xi, tj+1; . . . )− f(xi, tj; . . . )

τ
(6)

∆af(xi, tj; . . . ) =
1

a2
[
f(xi+1, tj; . . . ) + f(xi−1, tj; . . . )− 2f(xi, tj; . . . )

]
. (7)

b) Show that P (xi, tj;x0, t0) is given by

P (xi, tj;x0, t0) =

∫ π/a

−π/a

dk

2π

(
cos ka

)tj−t0/τeik(xi−x0) (8)

by solving Eq. (4).

Hint: Work in Fourier space and use

P (xi, tj;x0, t0) =

∫ π/a

−π/a

dk

2π
P (k, tj;x0, t0)e

ikxi (9)

where P (k, t0;x0, t0) is defined by

P (k, tj;x0, t0) =
∑
xi

P (xi, tj;x0, t0)e
−ikxi . (10)

c) Calculate the continuum limit (a → 0, τ → 0) of Eq. (5) and (8) provided that
a2/2τ ≡ D is kept constant.

Hint: Expand cos x ≈ 1− x2/2 and use the identity ex = limN→∞ (1 + x/N)N .

d) Now let’s assume that there is an inbalance in the hopping, i.e. we have λ > 0 such
that

p→ =
1

2
(1 + λ), p← =

1

2
(1− λ). (11)

Introduce the parameter c = γa/τ and find the corresponding partial differential
equation (in the continuum limit) for this case!

Solve the differential equation using the ansatz

Pnew(x, t;x0, t0) = P (x− f(t), t;x0, t0) (12)

where P is the solution of (c).


