1. World-sheet supersymmetry (intermediate)

An action with global worldsheet supersymmetry is given by

$$S = -\frac{1}{4\pi\kappa^2} \int d^2\xi (\partial^\alpha X^\mu \,\partial_\alpha X_\mu + \bar{\psi}^\mu \rho^\alpha \partial_\alpha \psi_\mu).$$

The Grassmann-valued fields ψ^μ are two-dimensional Majorana spinors. The ρ^α are 2×2 $\gamma\text{-matrices satisfying}$

$$\{\rho^{\alpha},\rho^{\beta}\}=2\eta^{\alpha\beta}$$

and the Dirac conjugate is $\bar{\psi} = i\psi^{\dagger}\rho^{0}$ with representation

$$\rho^0 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \qquad \rho^1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

a) Show that this action is invariant under $\mathcal{N} = 1$ supersymmetry

$$\delta X^{\mu} = \bar{\epsilon}\psi^{\mu}, \quad \delta\psi^{\mu} = \rho^{\alpha}\partial_{\alpha}X^{\mu}\epsilon.$$

Why are the components of ψ and ϵ Weyl "spinors"?

- **b)** Evaluate the commutators $[\delta_1, \delta_2] X^{\mu}$ and $[\delta_1, \delta_2] \psi^{\mu}$ to show that the commutator of two supersymmetry transformations amount to a translation along the world-sheet.
- c) Derive the Noether current (supercurrent) of supersymmetry transformations. Meditate on the relation between the supercurrent and the energy-momentum tensor.

2. Grande Finale: The super-Particle (intermediate)

A massless supersymmetric particle in D-dimensional Minkowski spacetime is described by the action

$$S_{\ell} = \int d\tau \left(\frac{\dot{X}^{\mu} \dot{X}_{\mu}}{2e} + \frac{i \dot{X}^{\mu} \psi_{\mu} \chi}{e} - i \psi^{\mu} \dot{\psi}_{\mu} \right)$$

where e is the einbein and χ its fermionic partner. ψ^{μ} are 2D Majorana fermions.

a) Derive the equations of motion for $X^{\mu}(\tau)$, $\psi^{\mu}(\tau)$ as well as e and χ . Find the correct supersymmetry transformations for e and χ by requiring that the action is invariant under (local!) supersymmetry transformations with

$$\delta X^{\mu} = i\epsilon\psi^{\mu}$$
 and $\delta\psi^{\mu} = \frac{1}{2e}(\dot{X}^{\mu} - i\chi\psi^{\mu})\epsilon.$

- b) Argue that you can set e = 1 and $\chi = 0$. Write down the gauged action. Important: What are the constraint equations that follow from this procedure? Interpret them!
- c) Consider the (global) supersymmetry transformations (derive them from the ones given in a)) and check that the commutator of two supersymmetry transformations will result in a τ translation by an amount $\delta \tau$.