Introduction to String Theory Chapter 10
ETH Zurich, HS11 Prof. N. Beisert

10 Superstrings

Until now, encountered only bosonic d.o.f. in string theory. Matter in nature is
dominantly fermionic. Need to add fermions to string theory.

Several interesting consequences:

Supersymmetry inevitable.

Critical dimension reduced from D = 26 to D = 10.
Increased stability.

Closed string tachyon absent. Stable D-branes.
Several formulations related by dualities.

10.1 Supersymmetry

String theory always includes spin-2 gravitons. Fermions will likely include spin—%
gravitini — supergravity. Spacetime symmetries extended to supersymmetry.

Super-Poincaré Algebra. Super-Poincaré algebra is an extension of Poincaré

algebra.

Poincaré: Lorentz rotations M,,,,
[M, M] ~ M, [M, P] ~ P, [P, P] = 0.

Super-Poincaré: Odd super-translation Qf, (a: spinor)

(M, Q] ~ @, [Q, P] =0, {Q1., Q) ~ "0, Py
N: rank of supersymmetry I =1,..., .

translations P,.

Q relates particles of

o of different spin,
e of different statistics,

and attributes similar properties to them. Symmetry between “forces” and
“matter”.

More supersymmetry, higher spin particles.

e gauge theory (spin < 1): < 16 @’s.
e gravity theory (spin < 2): < 32 @Q’s.

Superspace. Supersymmetry is symmetry of superspace. Add anticommuting
coordinates to spacetime z# — (z#,0¢). Superfields: expansion in 6 yields various
fields

F(x,0) = Fo(z) + 07 FL(X) + 6. ..+ ... +01m7

Package supermultiplet of particles in a single field.
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Spinors. Representations of Spin(D — 1,1) (Clitford).

Complex spinors (Dirac) in (3 4 1)D belong to C*. Can split into chiral spinors
(Weyl): C? & C?. Reality condition (Majorana): Re(C? & C?) = C2.

Spinors in higher dimensions:

spinor dimension times 2 for D — D + 2.

chiral spinors (Weyl) for D even.

real spinors (Majorana) for D = 0,1,2,3,4 (mod 8).
real chiral spinors (Majorana—Weyl) for D = 2 (mod 8).

Maximum dimensions:

e D = 10: real chiral spinor with 16 components (gauge).
e D = 11: real spinor with 32 components (gravity bound).

Super-Yang—Mills Theory. N = 1 supersymmetry in D = 10 Minkowski
space:

e gauge field A,: 8 on-shell d.o.f..
e adjoint real chiral spinor ¥,,: 8 on-shell d.o.f..

Simple action
S ~ /dmx tr(—iF“”FW - %’meT/”DMW”).
Supergravity Theories. Four relevant models:

e N = 1 supergravity in 11D: M-Theory.

e N =(1,1) supergravity in 10D: Type ITA supergravity.
e N = (2,0) supergravity in 10D: Type IIB supergravity.
e N = (1,0) supergravity in 10D: Type I supergravity.

Fields always 128+128 d.o.f. (type I: half, SYM only 8+8):

type | gr. [4] [3] [2] [1] sc. | gravitini spinors
M 1 0 1 0 0 0 1 0
mA |1 0o 1 1 1 1] (L) (11
mB |1 1 0 2 0 2| (200 (20
I |1 0 0 1 0 1| (Lo) (1,0
SYM| O 0 0 0 1 0 0 (0,1)

M-theory has no 2-form and no dilaton: no string theory. Type ITA, I1IB and I
have 2-form and dilaton: strings?!

10.2 Green—Schwarz Superstring

Type II string: Add fermions O to worldsheet. Equal/opposite chirality: 11B/ITA
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Action. Supermomentum IT# = 9, X* + ¢/ ©70,0m.

S ~ / d*\/— detggaﬁnuyﬂgﬂg
+ / ((Qlwdél — ©%4,d0?) dX" + @lwd(91627“d82>.

Action has kappa symmetry (local WS supersymmetry). Only in D = 10!

Note: fermions © have first and second class constraints. Non-linear equations of
motion. In general difficult to quantise canonically. Conformal gauge does not
resolve difficulties.

Light-Cone Gauge. Convenient to apply light-cone gauge. Simplifies
drastically: quadratic action, linear e.o.m.

S~ /d2§ (X - 0r X + 161 - 061 + 165 - 0,05 )

Bosons X with E)LE)RX' =0

e Vector of transverse SO(8): 8,
e Left and right moving d.o.f.

Fermions @1, O, with Or©; = 0 and 0,0 =0

e Real chiral spinor of transverse SO(8): 8; or 8.. Equal/opposite chiralities for
IIB/ITA: 8, + 8; or 8; + 8.
e Left and right moving d.o.f. in ©; and ©,, respectively.

Spectrum. Vacuum energy and central charge:

e 8 bosons and 8 fermions for L/R: ar, /g = 8((1) — 8((1) = 0. no shift a for L,
constraint. Level zero is massless! No tachyon!

e ¢ =10+ 32 = 26 (fermions count as 1 due to kappa).

e Super-Poincaré anomaly cancels.

Expansion into bosonic modes «,, and fermionic modes 3,. n < 0: creation, n = 0:
zero mode, n > 0: annihilation.

Zero modes and vacuum:

® (y is c.0.m. momentum: ¢.
e [, transforms the vacuum state:

B chiral (&) : 8, <> 8. vacuum — |8, + 8, q)
[ anti-chiral (8.): 8, <> 8, vacuum — |8, + 8, ¢q)

Spectrum at level zero: massless

e Type ITA closed: (8, + 8;) x (8, + 8.) (ITA supergravity)

8, x 8, + 8 x8.=(35,+28,+1)+ (56, + 8,),
8, X 8 + 8, x 8 = (565 + 8.) + (56, + 8;).
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e Type IIB closed: (8, + 8.) x (8, + 8.) (IIB supergravity)

8 X 8 +8.x8.=(35,+28, +1)+ (35. + 28, + 1),
8, x 8 + 8, x 8 = (565 + 8.) + (565 + 8.).

e Type I closed: (8, + 8.) x (8, + 8.) mod Z, (I supergravity)
(35, + 28, + 1) + (56, + 8.).

e Type I open: 8, + 8. (SYM).

10.3 Ramond—Neveu—Schwarz Superstring

There is an alternative formulation for the superstring: RNS. Manifest worldsheet
rather than spacetime supersymmetry!

Action. Action in conformal gauge:
S ~ / BE N (30LX"ORXY + W' OgW + WO VY -

e action is supersymmetric.
e fermions are worldsheet spinors but spacetime vectors.

Bosons as before. Fermions can be periodic or anti-periodic.

Ramond Sector. ¥(o + 27) = ¥ (o) periodic.

Fermion modes (3, as for bosons.

Vacuum is a real 32-component fermionic spinor.
a=—38C(1) + 8¢(1) = 0.

GSO projection: only chiral/anti-chiral states are physical!

Neveu—Schwarz Sector. V(o + 2w) = —¥(0) anti-periodic.

Half-integer modes for fermions: [3,,,1/s.

Vacuum is a bosonic scalar.

a=—38¢(1) — 18¢(1) = 3.

GSO projection: physical states require 5?"*!. No tachyon!

String Models. IIB/IIA strings for equal/opposite chiralities in L/R sectors.

Independent choice for left /right-movers in closed string. Four sectors: NS-NS,
RN-S, NS-R, R-R. Independent vacua.
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Superconformal Algebra. (Left) stress-energy tensor and conformal
supercurrent:

Ty, =0, X -0 X + %EPL . 8LWL, J, =Y, - oL X

Superconformal algebra L,, G, (2r is even/odd for R/NS):

(L, L) = (m —n)Lpyn + %cm(m2 — 1)0man,
[Lmv GT’} = (%m - T)Gm—&-rv

{Gr; Gs} = 2LT+S + %C(T2 — i)5r+s.

¢ = D (conventional factor % in ¢ for super-Virasoro).

Comparison. GS and RNS approach yield the same results. In light cone gauge:
related by SO(8) triality

chseinor
vedo
Compare features of both approaches: o’k\;?““’(_
GS RNS
fermions are spinors in target space worldsheet,
worldsheet supersymmetry (v') manifest
superconformal field theory x 4
target space supersymmetry | manifest (v)
supergravity couplings all some (NS-NS)
spacetime covariant X (V')

Third approach exists: Pure spinors (Berkovits). Introduce auxiliary bosonic
spinor \ satisfying Ay#\ = 0. Shares benefits of GS/RNS; covariant formulation.

10.4 Branes

Open superstrings couple to D-branes. Open string spectrum carries D-brane
fluctuations.

e massless: N' = 1 Super-Yang—Mills reduced to (d + 1)D.
e heavy string modes.
e sometimes: scalar tachyon.

Stable Dp-Branes. D-branes can be stable or decay. Open string tachyon
indicates D-brane instability.

e D-branes in bosonic string theory are instable.
e Dp-branes for IIB superstring are stable for p odd.
e Dp-branes for IIA superstring are stable for p even.
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e T-duality maps between ITA and IIB.

Stability is related to supersymmetry. Boundary conditions break symmetry

e Lorentz: SO(9,1) — SO(d, 1) x SO(9 — d).
e 16 supersymmetries preserved for p odd/even in IIB/IIA.
e 10 supersymmetries preserved for p even/odd in IIB/ITA.

Supersymmetry removes tachyon; stabilises strings.

Supergravity p-Branes. D-branes are non-perturbative objects. Not seen
perturbatively due to large mass.

Stable Dp-branes have low-energy limit as supergravity solutions.
p-brane supported by (p + 1)-form, gravity and dilaton.

e IIB/IIA have dilaton and two-form (NS-NS sector).
e IIB/ITA has forms of even/odd degree (R-R sector); relevant for stable
Dp-branes.

Features:

p-branes carry (p + 1)-form charge. charge prevents p-branes from evaporating.
charge density equals mass density.

16/32 supersymmetries preserved. 1/2 BPS condition.

Non-renormalisation theorem for 1/2 BPS: p-branes same at

weak /intermediate/strong coupling. BPS p-branes describe Dp-branes exactly.

Type-I Superstring. Consider open strings on D9-branes.
Gravity and gauge anomaly cancellation requires:

e gauge group of dimension 496.
e some special charge lattice property.

Two solutions: SO(32) and Fg x Eg. Here: SO(32). Breaks 1/2 supersymmetry:
Type L

e Sometimes considered independent type of superstring.
e Or: IIB, 16 D9 branes, space-filling orientifold-plane.

10.5 Heterotic Superstring

Two further superstring theories.
Almost no interaction between left and right movers. Exploit:

e left-movers as for superstring: 10D plus fermions.
e right-movers as for bosonic string: 26D (16 extra).

Heterotic string. 16 supersymmetries.

Anomaly cancellation requires gauge symmetry:
e HET-O: SO(32) or
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e HET-E: Eg X Eg.
Gauge group supported by 16 internal d.o.f..
HET-E interesting because Fg contains potential GUT groups:

Bs=SO(10),  E,=SU®G),  By=SU®3)x SU(2).

10.6 Dualities

Dualities relate seemingly different superstring theories.

e T-duality: time vs. space duality on worldsheet.
e S-duality: analog of electro-magnetic duality.

Dualities considered exact because of supersymmetry. Tests.

A Unique Theory. Dualities related various superstrings:

e T-duality: ITA < IIB; HET-E < HET-O
e S-duality: HET-O < Type [; IIB < 1IB

Furthermore ITA and HET-E at strong coupling: 11D supergravity theory (with
membrane).

Suspect underlying 11D theory called “M-theory”. Superstring theories as various
limits of M-theory.

Mirror Symmetry. Dualities applied to curved string backgrounds: Curved
spacetimes with

e inequivalent metrics can have
e cquivalent string physics.

E.g.: T-duality between large and small circles. Many examples for Calabi—Yau
manifolds.

String /Gauge Duality. Some low-energy effective theories can become exact.

String physics at the location of a brane described exactly by corresponding YM
theory.

Example: N coincident D3-branes in IIB string theory. Effective theory: N =4
Super-Yang-Mills theory in 4D.
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