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9 String Backgrounds

Have seen that string spectrum contains graviton. Graviton interacts according to
laws of General Relativity. General Relativity is a theory of spacetime geometry.
Strings can move in curved backgrounds.

How are strings and gravity related?

• Should we quantise the string background?
• Is the string graviton the same as the Einstein graviton?
• Is there a backreaction between strings and gravity?

9.1 Graviton Vertex Operator

Compare graviton as string excitation and background. Assume momentum q and
polarisation εµν .

Vertex Operator Construction. Graviton represented by closed string state

|ε; q〉 = εµν
(
αL,µ
−1 α

R,ν
−1 + αL,ν

−1α
R,µ
−1
)
|0; q〉.

Corresponding vertex operator reads

Oµν = :(∂Xµ∂̄Xν + ∂Xν ∂̄Xµ)eiq·X :

∼ :
√

det−g gαβ ∂αXµ ∂βX
ν eiq·X :.

Insertion into string worldsheet

V =

∫
d2ξ 1

2
εµνOµν .

Background Metric Construction. Flat background with plane wave
perturbation

Gµν(x) = ηµν + εµνe
iq·x + . . . .

Strings couple to background by replacement ηµν → Gµν

S = − 1

2πκ2

∫
d2ξ
√
− det g gαβ 1

2
Gµν(X) ∂αX

µ ∂βX
ν .

Same replacement ηµν → Gµν in Nambu�Goto action.

Perturbation of metric same as vertex operator

S = S0 −
1

2πκ2
V + . . .
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Conclusion. Graviton mode of string is the same as wave on background.

Quantum string on �at space contains gravitons. Gravitons introduce curvature
and deform �at background. String theory contains quantum gravity. Large
deformations away from �at background represented by coherent states of
gravitons.

String theory can be formulated on any background. String quantisation probes
nearby backgrounds. Low-energy physics depends on classical background. Full
quantum string theory is background independent, contains all backgrounds as
di�erent states (same as QG).

9.2 Curved Backgrounds

Consider strings on a curved background Gµν(x), curious insight awaits. Action in
conformal gauge

S = − 1

2πκ2

∫
d2ξ 1

2
Gµν(X) ηαβ∂αX

µ ∂βX
ν .

For generic metric G, e.o.m. for X are non-linear.

Type of model called non-linear sigma model. String background called target
space. Metric �eld Gµν(x) is sigma model coupling. In�nitely many couplings
(Taylor expansion of G).

In most QFT's couplings are renormalised. Problem here:

• Classical action has conformal symmetry.
• Conformal symmetry indispensable to remove one d.o.f..
• Renormalised coupling G(x, µ) depends on scale µ.
• New scale breaks quantum conformal invariance. Anomaly!

Renormalisation. Compute the conformal anomaly. Background �eld
quantisation:

• Pick (simple) classical solution X0 of string e.o.m..
• add perturbations X = X0 + κY . Quantum �eld Y .

Expansion of action S[X] = S[X0] + Y 2 + κY 3 + . . . in orders of Y

• Value of classical action S[X0] at Y
0 irrelevant.

• No linear term in Y due to e.o.m. for X0.
• Order Y 2 is kinetic term for quantum �eld Y .
• Order Y 3, Y 4, . . . are cubic, quartic, . . . interactions

+ + + . . .

Use target space di�eomorphisms s.t. locally

S = −
∫
d2ξ

2π
ηαβ

(
ηµν∂αY

µ∂βY
ν + 1

3
κ2Rµρνσ∂αY

µ∂βY
νY ρY σ

)
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Rµρνσ(x) is target space curvature tensor.

Kinetic term and quartic vertex: + + . . ..

At one loop we get tadpole diagram. Insert two-point correlator

κ2Rµρνσ∂αY
µ(ξ)∂βY

ν(ξ)〈Y ρ(ξ)Y σ(ξ)〉

but we know for ξ1 → ξ2

〈Y ρ(ξ1)Y
σ(ξ2)〉 ' −ηρσ log |ξ1 − ξ2|.

Not exact, but UV behaviour �xed by conformal symmetry. Logarithmic
singularity responsible for renormalisation. Gµν is running coupling, beta function

µ∂G

∂µ
= βµν = κ2Rµν , Rµν = Rρ

µρν .

Anomaly. Scale dependence breaks conformal symmetry: Trace of stress energy
tensor after renormalisation

ηαβTαβ = − 1

2κ2
βµνη

αβ∂αX
µ∂βX

ν .

Anomaly of Weyl symmetry! (gauge �xed already)

Conformal/Weyl symmetry is essential for correct d.o.f.. Remove by setting
βµν = 0. Einstein equation!

Rµν = 0.

Quantum strings can propagate only on Einstein backgrounds. General relativity!
Spin-2 particles at level 1 are gravitons.

Higher Corrections. There are corrections to the beta function from higher
perturbative orders in κ2

κ2 + κ4

 + +

+ . . .

βµν = κ2Rµν + 1
2
κ4RµρσκRν

ρσκ + . . . .

Also corrections from the expansion in the string coupling gs.

Corrections to Einstein equations at Planck scale: βµν = 0.
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9.3 Form Field and Dilaton

What about the other (massless) �elds? Two-form Bµν and dilaton scalar Φ?

Two-form couples via antisymmetric combination

1

2πκ2

∫
d2ξ 1

2
Bµν(X) εαβ∂αX

µ∂βX
ν =

1

2πκ2

∫
B.

In fact, canonical coupling of two-form to 2D worldsheet. Analogy to charged
particle in electromagnetic �eld. String has two-form charge.

Dilaton couples to worldsheet Riemann scalar

1

4π

∫
d2ξ
√
− det g Φ(X)R[g].

Interesting for several reasons:

• Euler characteristic χ of the worldsheet appears.
• Not Weyl invariant.
• Scalar can mix with gravity.
• Can get away from 26 dimensions.

Low-Energy E�ective Action. First discuss the various beta functions (trace
of renormalised stress energy tensor T )

gαβTαβ =− 1

2κ2
(√
− det g βGµνη

αβ + βBµνε
αβ
)
∂αX

µ∂βX
ν

− 1
2
βΦR[g]

with

βGµν = κ2Rµν + 2κ2DµDνΦ− 1
4
κ2HµρσH

ρσ
ν ,

βBµν = −1
2
κ2DλHµνλ + κ2DλΦHµνλ,

βΦ = −1
2
κ2D2Φ+ κ2DµΦDµΦ− 1

24
κ2HµνρH

µνρ.

Quantum string consistency requires βG = βB = βΦ = 0. Standard equations for
graviton, two-�eld and scalar. Follow from an action

S ∼
∫
d26x

√
− det g e−2Φ

(
R− 1

2
HµνρH

µνρ + 4∂µΦ∂µΦ
)
.

String low-energy e�ective action. Encodes low-energy physics of string theory.
Further corrections from curvature and loops.

Trivial solution: G = η, B = 0, Φ = Φ0 (�at background). Can also use torus
compacti�cation to reduce dimensions.
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String Coupling. Suppose Φ = Φ0 is constant, then dilaton coupling term is
topological ∫

d2ξ
√
− det g R[g] ∼ χ.

Measures Euler characteristic χ = 2h− 2 of world sheet.

Set gs = eiΦ0 . Then action yields χ factors of gs.

eiS ' eiΦ0χ = gχs .

Expansion in worldsheet topology.

g−2s + g0s + g2s

String coupling gs determined through background: Asymptotic value Φ0 of dilaton
�eld Φ.

String Frame. Notice unusual factor of exp(−2Φ) in S.

Scalar degrees of freedom can mix with metric. Could as well de�ne

G′µν = f(Φ)Gµν .

Remove exp(−2Φ) through suitable choice of f . Go from �string frame� to
�Einstein frame�. Standard kinetic terms for all �elds.

Noncritical Strings. We have seen earlier that D 6= 26 breaks Weyl symmetry.
D enters in e�ective action as worldsheet cosmological constant

S = . . .
(
R− 1

2
HµνρH

µνρ + 4∂µΦ∂µΦ− 2
3
κ−2(D − 26)

)
.

Can have D < 26, but requires Planck scale curvature.

Dilaton Scaling. Dilaton coupling to worldsheet is not Weyl invariant and has
unconventional power of κ.

• Consistent choice.
• Moves classical Weyl breakdown to one loop. Cancel quantum anomalies of
other �elds.

9.4 Open Strings

Open strings lead to additional states, �elds and couplings.

• Additional string states; e.g. massless vectors (photon):

|ζ; q〉 = ζµα
µ
−1|0; q〉.
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• Additional vertex operators; e.g. photon

V [ζ, q] ∼
∫
dτ ζµ∂τX

µ exp(iq ·X)

• Additional �elds to couple to string ends.

Background couplings can be identi�ed as for closed strings. Vertex operator has
same e�ect as background �eld.

Coupling depends on string boundary conditions: Dp-brane.

Neumann Boundaries. For all coordinates Xa, a = 0, . . . , p, with Neumann
conditions: couple a one-form gauge �eld A to end of string∫

end

dτẊaAa(X) =

∫
end

A.

• natural coupling of a charged point-particle to gauge �eld.
• string end is a charged point-like object.

Gauge �eld Aa exists only on Dp-brane. Okay since string ends constrained to Dp
brane.

Classical coupling of A respects Weyl symmetry. Quantum anomaly described by
beta function

βAa ∼ κ4∂bFab

Absence of conformal anomaly requires Maxwell ∂bFab = 0. Associated low-energy
e�ective action

S ∼ −κ4
∫
dp+1x 1

4
FabF

ab.

For planar Dp-brane can also include higher corrections in κ. Born�Infeld action:

S ∼
∫
dp+1x

√
− det(ηab + 2πκ2Fab).

Leading order is Maxwell kinetic term. Corrections at higher orders in κ.

Dirichlet Boundaries. Coupling of Dirichlet directions Xm,
m = p+ 1, . . . , D − 1, di�erent.

• Xm �xed, but X ′m can be used.
• Dual �eld Ym describes transverse Dp-brane displacement.
• Dp-branes are dynamical objects!

Beta function at leading order: massless scalar

βa ∼ ∂m∂mYa

E�ective action for higher orders: Dirac�Born�Infeld action

S ∼
∫
dp+1x

√
− det(gab + 2πκ2Fab).
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Induced WS metric gab = ∂aY
µ ∂bYµ. Embedding coordinates Y for Dp-brane.

Combination of

• Dirac action for p-branes and
• Born�Infeld action for gauge �elds.

D-Branes in a Curved Background. Can even add e�ect of close string �elds.

S ∼
∫
dp+1x e−Φ

√
− det(gab + 2πκ2Fab +Bab).

• gab is induced metric from curved background.
• Bab is pull back of 2-form �eld Bµν to Dp-brane.
• combination 2πα′Fab +Bab is gauge invariant.
• dilaton couples as prefactor like for closed string.

Coincident Branes. For N coincident branes gauge group enlarges from U(1)N

to U(N).

Gauge �eld should couple via Wilson line

T exp

∫
end

A.

Resulting e�ective action at leading order is

S ∼
∫
dp+1x tr

(
−1

4
(Fab)

2 + 1
2
(DaYm)2 + 1

4
[Ym, Yn]2

)
.

Yang�Mills, massless adjoint scalars, quartic interactions.

9.5 Two-Form Field of a String

We have seen that strings couple to various �elds. A string also generates a �eld
con�guration. Analogy: charged point particle generates Coulomb potential.

Fundamental String. Consider an in�nite straight string along 0, 1 directions:
1-brane. Generates a two-form potential

B = (f−1 − 1)dx0 ∧ dx1

Interactions with metric G and dilaton Φ require

ds2 = f−1ds22 + ds2D−2, e2Φ = f−1.

The function f with r2 = x22 + . . .+ x2D−1 reads

f = 1 +
g2sNκ

D−4

rD−4
.

This satis�es the low-energy e�ective string e.o.m. because f is a harmonic
function.

Note: Source at the location of the string (r = 0).
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• E.o.m. follow from combination of spacetime action and worldsheet coupling to
two-form ∫

D

H ∧ ∗H +

∫
2

B

Source term δD−2(r) absorbed by worldsheet.
• Charge of string measured by Gauss law via ∗H. Put (D − 3)-dimensional
sphere at �xed r.

Q =

∫
D−3
∗H = N.

Above string has N units of charge (quantised).

The fundamental string is not a D1-brane: Open strings do not end on it. It is the
string itself.

Solutions with more than one centre permissible.

Magnetic Brane. Another solution of the string e�ective e.o.m. describes a
(D − 5)-brane. It uses a dual (D − 4)-form potential C de�ned through

H = dB, ∗H = dC.

It carries magnetic charge

Q =

∫
3

H.

The source is located on the (D − 5)-brane(s). The coupling of (D − 5)-branes to
C compensates source.
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