Introduction to String Theory

ETH Zurich, HS11

8 String Scattering

Compute a string scattering amplitude. Two methods:

- worldsheet junction(s). string cylinders with cuts. integration over junctions.
- vertex operators. integration over punctures locations.

8.1 Vertex Operators

State-operator map:

- Which operator creates a string?
- How to specify the momentum q ?
- How to specify the string modes?

Solution is related to the operator $\mathcal{O}[q]=: \exp \left(i q_{\mu} X^{\mu}\right):$: Why?

- Momentum eigenstate: phase for translation $\exp \left(i q_{\mu} \epsilon^{\mu}\right)$.

Compute OPE with stress-energy T

$$
T(z) \mathcal{O}[q](w, \bar{w})=\frac{\frac{1}{4} \kappa^{2} q^{2} \mathcal{O}[q](w, \bar{w})}{(z-w)^{2}}+\frac{\partial \mathcal{O}[q](w, \bar{w})}{z-w}+\ldots
$$

Primary operator with weights $\left(\frac{1}{4} \kappa^{2} q^{2}, \frac{1}{4} \kappa^{2} q^{2}\right)$!

- non-trivial, non-integer weight,
- quantum effect $\sim \kappa^{2}$.

Consider two-point correlator

$$
\left\langle\mathcal{O}_{1}\left[q_{1}\right] \mathcal{O}_{2}\left[q_{2}\right]\right\rangle \simeq\left|z_{1}-z_{2}\right|^{\kappa^{2}\left(q_{1} \cdot q_{2}\right)}
$$

In fact, zero mode $X^{\mu}=x^{\mu}+\ldots$ contributes extra factor

$$
\int d^{D} x \exp \left(i q_{1} \cdot x+i q_{2} \cdot x\right) \sim \delta^{D}\left(q_{1}+q_{2}\right)
$$

Hence compatible with primary of weight $\left(\frac{1}{4} \kappa^{2} q^{2}, \frac{1}{4} \kappa^{2} q^{2}\right)$

$$
\left\langle\mathcal{O}_{1}\left[q_{1}\right] \mathcal{O}_{2}\left[q_{2}\right]\right\rangle \simeq \frac{\delta^{D}\left(q_{1}+q_{2}\right)}{\left|z_{1}-z_{2}\right|^{\kappa^{2} q_{1}^{2}}}
$$

Operator $\mathcal{O}[q](z, \bar{z})$ creates a string state at (z, \bar{z}). Worldsheet location unphysical, integrate:

$$
V[q]=g_{\mathrm{s}} \int d^{2} z \mathcal{O}[q](z, \bar{z})
$$

Can only integrate weight $(1,1)$ primary operators. Hence:

- mass $M^{2}=-q^{2}=-4 / \kappa^{2}$; string tachyon!
- intercept $a=\bar{a}=1$ due to worldsheet integration.

What about excited strings? Level-1 corresponds to

$$
V^{\mu \nu}[q]=g_{\mathrm{s}} \int d^{2} z \partial X^{\mu} \bar{\partial} X^{\nu} \mathcal{O}[q] .
$$

- weight is $\left(1+\frac{1}{4} \kappa^{2} q^{2}, 1+\frac{1}{4} \kappa^{2} q^{2}\right)=(1,1)$ for massless q.
- primary condition removes unphysical polarisations.
- gauge d.o.f. are total derivatives.

Vertex operator picture:

- CFT vacuum is empty worldsheet (genus 0 , no punctures).
- $\int d^{2} z \mathcal{O}[q](z, \bar{z})$ is string vacuum $|0 ; q\rangle$ (add puncture).
- $\int d^{2} z \ldots \mathcal{O}[q](z, \bar{z})$ are excited string states. Insertions of $\partial^{n} X^{\mu}$ correspond to string oscillators α_{n}^{μ}, insertions of $\bar{\partial}^{n} X^{\mu}$ correspond to $\bar{\alpha}_{n}^{\mu}$.

8.2 Veneziano Amplitude

Consider n-point amplitude (with $\mathcal{O}_{k}=\mathcal{O}\left[q_{k}\right]\left(z_{k}, \bar{z}_{k}\right)$)

$$
A_{n} \sim \frac{1}{g_{\mathrm{s}}^{2}}\left\langle V_{1} \ldots V_{n}\right\rangle \sim g_{\mathrm{s}}^{n-2} \int d^{2 n} z\left\langle\mathcal{O}_{1} \ldots \mathcal{O}_{n}\right\rangle
$$

- simplest to use tachyon vertex operators,
- can do others, but add complications (fields),
- computation \& result qualitatively the same.

Perform Wick contractions and zero mode integration

$$
\left\langle\mathcal{O}_{1} \ldots \mathcal{O}_{n}\right\rangle \sim \delta^{D}(Q) \prod_{j<k}\left|z_{j}-z_{k}\right|^{\kappa^{2} q_{j} \cdot q_{k}}
$$

Integral invariant under Möbius transformations $\left(q_{k}^{2}=4 / \kappa^{2}\right)$. Map three punctures to fixed positions $z_{1}=\infty, z_{2}=0, z_{3}=1$. Remaining integral for $n=4$ strings

$$
A_{4} \sim g_{\mathrm{s}}^{2} \delta^{D}(Q) \int d^{2} z|z|^{\kappa^{2} q_{2} \cdot q_{4}}|1-z|^{\kappa^{2} q_{3} \cdot q_{4}}
$$

can be performed

$$
A_{4} \sim g_{\mathrm{s}}^{2} \delta^{D}(Q) \frac{\Gamma\left(-1-\kappa^{2} s / 4\right) \Gamma\left(-1-\kappa^{2} t / 4\right) \Gamma\left(-1-\kappa^{2} u / 4\right)}{\Gamma\left(+2+\kappa^{2} s / 4\right) \Gamma\left(+2+\kappa^{2} t / 4\right) \Gamma\left(+2+\kappa^{2} u / 4\right)} .
$$

Mandelstam invariants:

$$
s=\left(q_{1}+q_{2}\right)^{2}, \quad t=\left(q_{1}+q_{4}\right)^{2}, \quad u=\left(q_{1}+q_{3}\right)^{2},
$$

with relation $s+t+u=-q_{1}^{2}-q_{2}^{2}-q_{3}^{2}-q_{4}^{2}=-16 / \kappa^{2}$.
This is the Virasoro-Shapiro amplitude for closed strings. Corresponding amplitude for open strings

$$
A_{4} \sim g_{\mathrm{s}} \frac{\Gamma\left(-1-\kappa^{2} s\right) \Gamma\left(-1-\kappa^{2} t\right)}{\Gamma\left(+2+\kappa^{2} u\right)}
$$

was proposed (not calculated) earlier by Veneziano. Considered birth of string theory (dual resonance model).

Amplitudes have many desirable features:

- Poles at $s, t, u=(N-1) 4 / \kappa^{2}$ or $s, t=(N-1) / \kappa^{2}$, virtual particles with string mass exchanged.

- Residues indicate spin $J=2 N$ or $J=N$. Regge trajectory!
- Soft behaviour at $s \rightarrow \infty$. Even for gravitons!
- Manifest crossing symmetry $s \leftrightarrow t \leftrightarrow u$ or $s \leftrightarrow t$. Amazing!

Not possible for QFT with finitely many particles.

8.3 String Loops

Result exact as far as α^{\prime} is concerned. Free theory in α^{\prime} !
However, worldsheet topology matters. String loop corrections for adding handles: higher genus. Power of g_{s} reflects Euler characteristic of worldsheet.

Tree Level. Worldsheet is sphere or disk with n punctures. Euler characteristic $-2+n$ or $-1+n / 2$. 6 global conformal symmetries, integration over $n-3$ points.

One Loop. Worldsheet is torus with n punctures. Euler characteristic n. 2 moduli: integration over Teichmüller space. 2 shifts; integration over $n-1$ points. $2 n$ integrations; result: elliptic \& modular functions; feasible!

Two Loops. Worldsheet is 2 -torus with n punctures. Euler characteristic $2+n$. 6 moduli, no shifts: $2(n+3)$ integrations. Hard, but can be done. No higher-loop results available.

