7 Conformal Field Theory

So far considered mostly string spectrum:

- equations of motion (local),
- closed/open periodicity conditions (global),
- quantisation.

Quantum mechanics of infinite tower of string modes α_{n}.
Next will consider local picture on worldsheet: Fields $X(\xi)$. Quantisation \rightarrow
Quantum Field Theory (QFT). Will need for string scattering.
Reparametrisation invariance:

- worldsheet coordinates ξ artificial,
- gauge fixing: conformal gauge,
- worldsheet coordinates ξ meaningful,
- diffeomorphisms \rightarrow residual conformal symmetry,
- Conformal Field Theory (CFT).

CFT: QFT making use of conformal symmetry.

- do not calculate blindly,
- structure of final results dictated by symmetry,
- conformal symmetry: large amount, exploit!

Let us scrutinise conformal symmetry:

- Central framework in string theory,
- but also useful for many 2D statistical mechanics systems.

7.1 Conformal Transformations

Special coordinate transformation:

- all angles unchanged,
- definition of length can change,

Metric preserved up to scale

$$
g_{\mu^{\prime} \nu^{\prime}}^{\prime}\left(x^{\prime}\right)=\frac{d x^{\mu}}{d x^{\prime \mu^{\prime}}} \frac{d x^{\nu}}{d x^{\prime \nu^{\prime}}} g_{\mu \nu}(x) \stackrel{!}{=} f(x) g_{\mu^{\prime} \nu^{\prime}}(x)
$$

Action on Coordinates. Generally in D dimensions

- Lorentz rotations $x^{\mu} \rightarrow \Lambda^{\mu}{ }_{\nu} x^{\nu}$,
- translations $x^{\mu} \rightarrow x^{\mu}+a^{\mu}$,
- scale transformations / dila(ta)tions $x^{\mu} \rightarrow s x^{\mu}$,
- conformal inversions (discrete) $x^{\mu} \rightarrow x^{\mu} / x^{2}$,
- conformal boosts (inversion, translation, inversion).

Conformal group: $S O(D, 2)$ (rather: universal cover).

Action on Fields. E.g. a free scalar

$$
S \sim \int d^{D} x \frac{1}{2} \partial_{\mu} \Phi(x) \partial^{\mu} \Phi(x)
$$

- Manifest invariance under Lorentz rotations \& translations

$$
\Phi^{\prime}(x)=\Phi(\Lambda x+a) .
$$

- Invariance under scaling $x^{\prime}=s x$ requires

$$
\Phi^{\prime}(x)=s^{(D-2) / 2} \Phi(s x) .
$$

- Invariance under inversions

$$
\Phi^{\prime}(x)=\left(x^{2}\right)^{-(D-2) / 2} \Phi(1 / x) .
$$

Similar (but more complicated) rules for:

- scalar field $\phi(x)$ with different scaling $\phi^{\prime}(x)=s^{\Delta} \phi(s x)$,
- spinning fields ρ_{μ}, \ldots,
- derivatives $\partial_{\mu} \Phi, \partial_{\mu} \partial_{\nu} \Phi, \partial^{2} \Phi, \ldots$.

2D Conformal Symmetries. QFT's in 2D are rather tractable. CFT's in 2D are especially simple:

- Conformal group splits $S O(2,2) \simeq S L(2, \mathbb{R})_{\mathrm{L}} \times S L(2, \mathbb{R})_{\mathrm{R}}$
- $S L(2, \mathbb{R})_{\mathrm{L} / \mathrm{R}}$ act on coordinates as (drop L/R)

$$
\xi^{\prime}=\frac{a \xi+b}{c \xi+d}, \quad \delta \xi=\beta+\alpha \xi-\gamma \xi^{2}
$$

$\beta^{\mathrm{L} / \mathrm{R}}$ are two translations, $\alpha^{\mathrm{L} / \mathrm{R}}$ are rotations and scaling, $\gamma^{\mathrm{L} / \mathrm{R}}$ are two conformal boosts.

- $S L(2, \mathbb{R})_{\mathrm{L} / \mathrm{R}}$ extends to infinite-dimensional Virasoro

$$
\delta \xi^{\mathrm{L} / \mathrm{R}}=\epsilon^{\mathrm{L} / \mathrm{R}}\left(\xi^{\mathrm{L} / \mathrm{R}}\right)=\sum_{n} \epsilon_{n}^{\mathrm{L} / \mathrm{R}}\left(\xi^{\mathrm{L} / \mathrm{R}}\right)^{1-n} .
$$

- Boundaries typically distorted by Virasoro. Only subalgebra preserves boundaries, e.g. $S L(2, \mathbb{R})$.

7.2 Conformal Correlators

In a quantum theory interested in

- spectrum of operators (string spectrum),
- probabilities,
- expectation value of operators on states.

In QFT compute (vacuum) expectation values:

- momentum eigenstates: particle scattering, S-matrix

$$
\left\langle\vec{q}_{1}, \vec{q}_{2}, \ldots\right| S\left|\vec{p}_{1}, \vec{p}_{2}, \ldots\right\rangle=\langle 0| a\left(\vec{q}_{1}\right) a\left(\vec{q}_{2}\right) \ldots S \ldots a^{\dagger}\left(\vec{p}_{2}\right) a^{\dagger}\left(\vec{p}_{1}\right)|0\rangle
$$

- position eigenstates: time-ordered correlation functions

$$
\left\langle\Phi\left(x_{1}\right) \Phi\left(x_{2}\right) \ldots\right\rangle=\langle 0| T\left[\Phi\left(x_{1}\right) \Phi\left(x_{2}\right) \ldots\right]|0\rangle
$$

Correlator of String Coordinates. Can compute a worldsheet correlator using underlying oscillator relations

$$
\begin{aligned}
\langle 0| X^{\nu}\left(\xi_{2}\right) X^{\mu}\left(\xi_{1}\right)|0\rangle= & -\frac{\kappa^{2}}{2} \eta^{\mu \nu} \log \left(\exp \left(i \xi_{2}^{\mathrm{L}}\right)-\exp \left(i \xi_{1}^{\mathrm{L}}\right)\right) \\
& -\frac{\kappa^{2}}{2} \eta^{\mu \nu} \log \left(\exp \left(i \xi_{2}^{\mathrm{R}}\right)-\exp \left(i \xi_{1}^{\mathrm{R}}\right)\right)+\ldots
\end{aligned}
$$

Can reproduce from CFT? Scalar ϕ of dimension Δ :

$$
\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right)\right\rangle=F\left(x_{1}, x_{2}\right)
$$

Correlator should be invariant!

- Translation invariance

$$
F\left(x_{1}, x_{2}\right)=F\left(x_{1}-x_{2}\right)=: F\left(x_{12}\right) .
$$

Just one vector variable.

- Invariance under Lorentz rotations

$$
F\left(x_{12}\right)=F\left(x_{12}^{2}\right) .
$$

Just a scalar variable.

- Scaling invariance

$$
\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right)\right\rangle \stackrel{!}{=}\left\langle\phi^{\prime}\left(x_{1}\right) \phi^{\prime}\left(x_{2}\right)\right\rangle=s^{2 \Delta}\left\langle\phi\left(s x_{1}\right) \phi\left(s x_{2}\right)\right\rangle,
$$

hence $F\left(x_{12}^{2}\right)=s^{2 \Delta} F\left(s^{2} x_{12}^{2}\right)$ and

$$
F\left(x_{12}^{2}\right)=\frac{N}{\left(x_{12}^{2}\right)^{\Delta}} .
$$

Just a (normalisation) constant N !

Logarithmic Correlator. Our scalar has scaling dimension $\Delta=(D-2) / 2=0$. Constant correlator $F\left(x_{1}, x_{2}\right)=N$?! Not quite: Take limit $D=2+2 \epsilon, N=N_{2} / \epsilon$

$$
F\left(x_{1}, x_{2}\right)=\frac{N_{2}}{\epsilon\left(x_{12}^{2}\right)^{\epsilon}} \rightarrow \frac{N_{2}}{\epsilon}-N_{2} \log x_{12}^{2}+\ldots .
$$

Note: $\Delta=0$ correlator can be logarithmic. Still not there. Use LC coordinates $x_{12}^{2}=-x_{12}^{\mathrm{L}} x_{12}^{\mathrm{R}}$ and identify

$$
x^{\mathrm{L}}=\exp \left(i \xi^{\mathrm{L}}\right), \quad x^{\mathrm{R}}=\exp \left(i \xi^{\mathrm{R}}\right)
$$

Why the identification?

- 2D conformal transformation,
- closed string periodicity $\sigma \equiv \sigma+2 \pi$, but $x^{\mathrm{L} / \mathrm{R}}$ unique!
- choose appropriate coordinates for boundaries.

String coordinates are functions of $x^{\mathrm{L} / \mathrm{R}}$ except for linear dependence on $\tau=-\frac{i}{2} \log \left(x^{\mathrm{L}} x^{\mathrm{R}}\right)$. Better choice of field $\partial X^{\mu} / \partial x^{\mathrm{L} / \mathrm{R}}$:

$$
\langle 0| \partial_{\mathrm{L}} X^{\nu}\left(x_{2}\right) \partial_{\mathrm{L}} X^{\mu}\left(x_{1}\right)|0\rangle=\frac{-\frac{1}{2} \kappa^{2} \eta^{\mu \nu}}{\left(x_{2}^{\mathrm{L}}-x_{1}^{\mathrm{L}}\right)^{2}}
$$

More manifestly conformal!

Wick Rotation. In this context: Typically perform Wick rotation $\tau=-i \tilde{\tau}$ (now $\tilde{\tau}$ real)

$$
\exp \left(i \xi^{\mathrm{L}}\right)=\exp (\tilde{\tau}-i \sigma)=: \bar{z}, \quad \exp \left(i \xi^{\mathrm{R}}\right)=\exp (\tilde{\tau}+i \sigma)=: z
$$

Cylindrical coordinates for (euclidean) string:

- radius $|z|$ is exponential euclidean time $\tilde{\tau}$,
- σ is angular coordinate (naturally periodic).

Standard treatment: Euclidean CFT

- Worldsheet coordinates z and \bar{z} are complex conjugates.
- Fields are functions $f(z, \bar{z})$ of complex z.
- String coordinates are holomorphic functions

$$
X(z, \bar{z})=X(z)+\bar{X}(\bar{z}) .
$$

- Conformal transformations are holomorphic.
- Employ powerful functional analysis: residue theorems.

Euclidean WS convenient and conventional. Could as well work on Minkowski worldsheet, nothing lost!

7.3 Local Operators

We understand the basic string coordinate field $X(z, \bar{z})=X(z)+\bar{X}(\bar{z})$, or better $\partial X(z)$ and $\bar{\partial} \bar{X}(\bar{z})$.
Basic objects in a CFT are local operators $\mathcal{O}_{i}(z, \bar{z})$:

- products of fields X and derivatives $\partial^{n} \bar{\partial}^{\bar{n}} X$,
- evaluated at the same point (z, \bar{z}) on the worldsheet,
- normal ordered $\mathcal{O}_{i}=$:. ..: implicit (no self-correlations),
- for example $\mathcal{O}_{1}=:(\partial X)^{2}:, \mathcal{O}_{2}^{\mu \nu}=: X^{\mu} \partial X^{\nu}:-: X^{\nu} \partial X^{\mu}:, \ldots$

Local operators behave

- classically as the sum of constituents,
- quantum-mechanically as independent entities: recall quantum effects in Virasoro charges $(\partial X)^{2}$!
Main task: classify local operators.

Descendants. All local operators transform under shifts $(\delta z, \delta \bar{z})=(\epsilon, \bar{\epsilon})$ as

$$
\delta \mathcal{O}=\epsilon \partial \mathcal{O}+\bar{\epsilon} \bar{\partial} \mathcal{O} .
$$

An operator $\partial^{n} \bar{\partial}^{\bar{n}} \mathcal{O}$ is called a descendant of \mathcal{O}. Shifts are symmetries: No need to consider descendants.

Weights. Most local operators classified by weights (h, \bar{h}). Transformation under $(z, \bar{z}) \rightarrow(s z, \bar{s} \bar{z})$ or $\delta(z, \bar{z})=(\epsilon z, \bar{\epsilon} z)$

$$
\begin{aligned}
\mathcal{O}^{\prime}(z, \bar{z}) & =s^{h} \bar{s}^{\bar{h}} \mathcal{O}(s z, \bar{s} \bar{z}) \\
\delta \mathcal{O} & =\epsilon(h \mathcal{O}+z \partial \mathcal{O})+\bar{\epsilon}(\bar{h} \mathcal{O}+\bar{z} \bar{\partial} \mathcal{O})
\end{aligned}
$$

Transformations are scaling and rotation, hence scaling dimension $\Delta=h+\bar{h}$ and $\operatorname{spin} S=h-\bar{h}$.
For unitary CFT: Both h, \bar{h} are real and non-negative. E.g. weights: $\partial X \rightarrow(1,0)$, $(\partial X)^{2} \rightarrow(2,0)$.

Products of local operators $\mathcal{O}=\mathcal{O}_{1} \mathcal{O}_{2}$:

- total weight is sum of individual weights classically;
- weights usually not additive in quantum theory!

Note: X does not have proper weights, but ∂X does.

Quasi-Primary Operators. A local operator with weights (h, \bar{h}) is called quasi-primary if

$$
\mathcal{O}^{\prime}(z, \bar{z})=\left(\frac{d z^{\prime}}{d z}\right)^{h}\left(\frac{d \bar{z}^{\prime}}{d \bar{z}}\right)^{\bar{h}} \mathcal{O}\left(z^{\prime}, \bar{z}^{\prime}\right) .
$$

for all $S L(2, \mathbb{C})$ Möbius transformations

$$
z^{\prime}=\frac{a z+b}{c z+d}, \quad \bar{z}^{\prime}=\frac{\bar{a} \bar{z}+\bar{b}}{\bar{c} \bar{z}+\bar{d}} .
$$

For infinitesimal boosts $\delta(z, \bar{z})=\left(\epsilon z^{2}, \bar{\epsilon} \bar{z}^{2}\right)$ it must satisfy

$$
\delta \mathcal{O}=\epsilon\left(2 h z \mathcal{O}+z^{2} \partial \mathcal{O}\right)+\bar{\epsilon}\left(2 \bar{h} \bar{z} \mathcal{O}+\bar{z}^{2} \bar{\partial} \mathcal{O}\right) .
$$

Descendants of quasi-primaries are not quasi-primary.
Need to consider only quasi-primary operators.

Primary Operators. An operator is called primary if it satisfies the quasi-primary conditions for all transformations

$$
(z, \bar{z}) \rightarrow\left(z^{\prime}(z), \bar{z}^{\prime}(\bar{z})\right) \quad \text { or } \quad(\delta z, \delta \bar{z})=(\zeta(z), \bar{\zeta}(\bar{z})) .
$$

Infinitesimally

$$
\delta \mathcal{O}=(h \partial \zeta \mathcal{O}+\zeta \partial \mathcal{O})+(\bar{h} \bar{\partial} \bar{\zeta} \mathcal{O}+\bar{\zeta} \bar{\partial} \mathcal{O}) .
$$

Note: Correlators are only locally invariant. Only a subclass of conformal transformations (e.g. Möbius) leaves correlators globally invariant.

Example. Operator $\mathcal{O}^{\mu}=\partial X^{\mu}$ is primary; $(h, \bar{h})=(1,0)$.

$$
\left\langle\mathcal{O}_{1}^{\mu} \mathcal{O}_{2}^{\nu}\right\rangle=\frac{-\frac{1}{2} \kappa^{2} \eta^{\mu \nu}}{\left(z_{1}-z_{2}\right)^{2}} .
$$

Invariance under $\delta z=z^{1-n}$:

- exact for $|n| \leq 1$ (Möbius),
- up to polynomials for $|n|>1$ (small w.r.t. $\left.1 /\left(z_{1}-z_{2}\right)^{2}\right)$.

State-Operator Map. There is a one-to-one map between

- quantum states on a cylinder $\mathbb{R} \times S^{1}$ and
- local operators (at $z=0$).

Consider the conformal map

$$
z=\exp (+i \zeta), \quad \bar{z}=\exp (-i \bar{\zeta}), \quad \zeta, \bar{\zeta}=\sigma \mp i \tilde{\tau}
$$

State given by wave function at constant $\tilde{\tau}=-\operatorname{Im} \zeta$:

- Time evolution is radial evolution in z plane.
- Asymptotic time $\tilde{\tau} \rightarrow-\infty$ corresponds to $z=0$.
- Local operator at $z=0$ to excite asymptotic wave function.
- Unit operator 1 corresponds to vacuum.

7.4 Operator Product Expansion

In a CFT we wish to compute correlation functions

$$
\left\langle\mathcal{O}_{1}\left(\xi_{1}\right) \mathcal{O}_{2}\left(\xi_{2}\right) \ldots \mathcal{O}_{n}\left(\xi_{n}\right)\right\rangle=F_{12 \ldots n}
$$

Suppose $\xi_{1} \approx \xi_{2}$; then can Taylor expand

$$
\mathcal{O}_{1}\left(\xi_{1}\right) \mathcal{O}_{2}\left(\xi_{2}\right)=\sum_{n=0}^{\infty} \frac{1}{n!}\left(\xi_{2}-\xi_{1}\right)^{n} \mathcal{O}_{1}\left(\xi_{1}\right) \partial^{n} \mathcal{O}_{2}\left(\xi_{1}\right) .
$$

Converts local operators at two points into a sum of local operators at a single point. Classical statement is exact.

Quantum OPE. Quantum-mechanically there are additional contributions from operator ordering (normal ordering implicit). Still product of local operators can be written as sum of some local operators

$$
\mathcal{O}_{1}\left(\xi_{1}\right) \mathcal{O}_{2}\left(\xi_{2}\right)=\sum_{i} C_{12}^{i}\left(\xi_{2}-\xi_{1}\right) \mathcal{O}_{i}\left(\xi_{1}\right)
$$

More precise formulation with any (non-local) operators ". . ."

$$
\left\langle\mathcal{O}_{1}\left(\xi_{1}\right) \mathcal{O}_{2}\left(\xi_{2}\right) \ldots\right\rangle=\sum_{i} C_{12}^{i}\left(\xi_{2}-\xi_{1}\right)\left\langle\mathcal{O}_{i}\left(\xi_{1}\right) \ldots\right\rangle .
$$

This statement is called Operator Product Expansion (OPE). $C_{i j}^{k}\left(\xi_{2}-\xi_{1}\right)$ are called structure constants \& conformal blocks. Sum extends over all local operators (including descendants).
Idea: Every (non-local) operator can be written as an expansion in local operators. Analog: Multipole expansion.

It works exactly in any CFT and is a central tool.

Higher Points. Can formally compute higher-point correlation functions:

$$
F_{123 \ldots n}=\sum_{i} c_{12}^{i} F_{i 3 \ldots n}
$$

Apply recursively to reduce to single point.
One-point function is trivial (except for unit operator 1)

$$
\left\langle\mathcal{O}_{i}\right\rangle=0, \quad\langle 1\rangle=1 .
$$

Higher-point function reduced to sequence of $C_{i j}^{k}$:

- vast simplification,
- need only $C_{i j}^{k}$ for correlators in CFT,
- hard to compute in practice,
- result superficially depends on OPE sequence (crossing).

Lower Points. Two-point function is OPE onto unity

$$
F_{i j}=\left\langle\mathcal{O}_{i} \mathcal{O}_{j}\right\rangle=\sum_{k} C_{i j}^{k}\left\langle\mathcal{O}_{k}\right\rangle=C_{i j}^{1} .
$$

Three-point function determines OPE constants

$$
F_{i j k}=\left\langle\mathcal{O}_{i} \mathcal{O}_{j} \mathcal{O}_{k}\right\rangle=\sum_{l} C_{i j}^{l}\left\langle\mathcal{O}_{k} \mathcal{O}_{l}\right\rangle=\sum_{l} F_{k l} C_{i j}^{l}
$$

Lower-point functions restricted by conformal symmetry:

- Two-point function only for related operators.
- No two-point or three-point conformal invariants. Can map triple of point to any other triple of points.
- Coordinate dependence of two-point function fixed

$$
F_{i j} \sim \frac{N_{i j}}{\left|\xi_{i}-\xi_{j}\right|^{2 \Delta_{i}}} .
$$

Numerator N depends on dimension, spin, level of descendant and operator normalisation.

- Coordinate dependence of three-point function fixed

$$
F_{i j k} \sim \frac{N_{i j k}}{\left|\xi_{i}-\xi_{j}\right|^{\Delta_{i j}}\left|\xi_{j}-\xi_{k}\right|^{\Delta_{j k}}\left|\xi_{k}-\xi_{i}\right|^{\Delta_{k i}}}
$$

with scaling weights $\Delta_{i j}=\Delta_{i}+\Delta_{j}-\Delta_{k}$. Numerators N depend on dimension, spin, level of descendant and operator normalisation.

- Three-point functions exist for three different operators.

Normalise operators, then CFT data consists of

- scaling dimensions, spins: spectrum,
- coefficients of three-point function: structure constants.

7.5 Stress-Energy Tensor

The Noether currents for spacetime symmetries are encoded into the conserved stress-energy tensor $T_{\alpha \beta}$

$$
T_{\alpha \beta}=-\frac{1}{4 \pi \kappa^{2}}\left(\left(\partial_{\alpha} X\right) \cdot\left(\partial_{\beta} X\right)-\frac{1}{2} \eta_{\alpha \beta} \eta^{\gamma \delta}\left(\partial_{\gamma} X\right) \cdot\left(\partial_{\delta} X\right)\right)
$$

Object of central importance for CFT/OPE! Trace is exactly zero: Weyl symmetry. Remaining components T_{LL} and T_{RR} translate to euclidean

$$
T=-\frac{1}{\kappa^{2}}(\partial X)^{2}, \quad \bar{T}=-\frac{1}{\kappa^{2}}(\bar{\partial} \bar{X})^{2} .
$$

Ignore string physical state condition $T=\bar{T}=0$.

Conservation. Current $J(z)=\zeta(z) T(z)$ for $\delta z=\zeta(z)$. Classical conservation $\bar{\partial} J=0$ by means of e.o.m.. QFT: Conservation replaced by Ward identity:

$$
\bar{\partial} J(z) \mathcal{O}(w, \bar{w})=2 \pi \delta^{2}(z-w, \bar{z}-\bar{w}) \delta \mathcal{O}(w, \bar{w}) .
$$

Current J conserved except at operator locations.
OPE: Integrate z over small ball around w

$$
\frac{1}{2 \pi} \int_{|z-w|<\epsilon} d^{2} z \ldots
$$

Evaluate integration over $\bar{z}\left(\int d^{2} z \bar{\partial} \ldots=-i \int d z \ldots\right)$

$$
\frac{1}{2 \pi i} \int_{|z-w|=\epsilon} d z J(z) \mathcal{O}(w, \bar{w})=\delta \mathcal{O}(w, \bar{w}) .
$$

Similarly for \bar{T}. Consider only holomorphic part.

Stress-Energy OPE. Derive OPE of \mathcal{O} and T.
First consider translation $\delta z=\epsilon, \delta \mathcal{O}=\epsilon \partial \mathcal{O}$. Need simple pole to generate residue

$$
T(z) \mathcal{O}(w, \bar{w})=\ldots+\frac{\partial \mathcal{O}(w, \bar{w})}{z-w}+\ldots
$$

Further terms with higher poles and polynomials in ". . .".
Suppose \mathcal{O} has holomorphic weight h. Consider scaling $\delta z=\epsilon z$, $\delta \mathcal{O}=\epsilon(h \mathcal{O}+z \partial \mathcal{O})$. Substitute and require following poles in OPE

$$
T(z) \mathcal{O}(w, \bar{w})=\ldots+\frac{h \mathcal{O}(w, \bar{w})}{(z-w)^{2}}+\frac{\partial \mathcal{O}(w, \bar{w})}{z-w}+\ldots
$$

Next suppose \mathcal{O} is quasi-primary. Consider scaling $\delta z=\epsilon z^{2}$, $\delta \mathcal{O}=\epsilon\left(2 h z \mathcal{O}+z^{2} \partial \mathcal{O}\right)$. Substitute and require absence of cubic pole

$$
T(z) \mathcal{O}(w, \bar{w})=\ldots+\frac{0}{(z-w)^{3}}+\frac{h \mathcal{O}(w, \bar{w})}{(z-w)^{2}}+\frac{\partial \mathcal{O}(w, \bar{w})}{z-w}+\ldots
$$

Finally suppose \mathcal{O} is primary. Leads to absence of higher poles

$$
T(z) \mathcal{O}(w, \bar{w})=\frac{h \mathcal{O}(w, \bar{w})}{(z-w)^{2}}+\frac{\partial \mathcal{O}(w, \bar{w})}{z-w}+\ldots
$$

Note that derivatives shift poles by one order.
Descendants are not (quasi-)primaries.
OPE of stress-energy tensor. Compute explicitly (Wick):

$$
T(z) T(w)=\frac{c / 2}{(z-w)^{4}}+\frac{2 T(w)}{(z-w)^{2}}+\frac{\partial T(w)}{z-w}+\ldots
$$

Result applies to general CFT's. Virasoro algebra!

- T is a local operator,
- T has holomorphic weight $h=2$ (classical),
- T is quasi-primary,
- T is not primary (unless $c=0$),
- quartic pole carries central charge $c=D$.

Conformal transformations for T almost primary:

$$
\begin{aligned}
\delta T & =\delta z \partial T+2 \partial \delta z T+\frac{c}{12} \partial^{3} \delta z \\
T^{\prime}(z) & =\left(\frac{d z^{\prime}}{d z}\right)^{2}\left(T\left(z^{\prime}\right)+\frac{c}{12} S\left(z^{\prime}, z\right)\right), \\
S\left(z^{\prime}, z\right) & =\left(\frac{d^{3} z^{\prime}}{d z^{3}}\right)\left(\frac{d z^{\prime}}{d z}\right)^{-1}-\frac{3}{2}\left(\frac{d^{2} z^{\prime}}{d z^{2}}\right)^{2}\left(\frac{d z^{\prime}}{d z}\right)^{-2}
\end{aligned}
$$

Additional term S is Schwarzian derivative. Zero for Möbius transformations.

