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4 String Quantisation

We have seen that the classical closed string is described by

• a bunch of harmonic oscillators α
L/R
n for the string modes;

• a relativistic particle (x, p) describing the centre of mass.

Both systems coupled via Virasoro constraints.

We have two reasonable formulations:

• Covariant formulation with D oscillators αµn per mode. Virasoro constraints
LR
n = LL

n = 0 and conformal symmetry.
• Light cone formulation with D − 2 oscillators ~αn per mode. No constraints, full
Poincaré symmetry not manifest.

4.1 Canonical Quantisation

Derive commutation relations for variables x, p, αn.

Recall action in conformal gauge

S =
1

2πκ2

∫
d2ξ 1

2

(
Ẋ2 −X ′2

)
Substitute closed string mode expansion (with free time)

Xµ = κ
∑

n
βµn(τ) exp(−inσ)

Obtain tower of HO's (β0 free particle)

S =
1

2

∫
dτ
∑

n

(
β̇n · β̇−n − n2βn · β−n

)
Canonical momentum and canonical commutator:

πn = β̇n, [βµm, π
ν
n] = iηµνδm+n.

Match X with previous classical solution at τ = 0

xµ = κβµ0 , pµ =
πµ0
κ
, αL/R,µ

n =
nβµ∓n

i
√

2
+
πµ∓n√

2
;

resulting commutators in original variables

[xµ, pν ] = iηµν ,
[
αL,µ
m , αL,ν

n

]
=
[
αR,µ
m , αR,ν

n

]
= mηµνδm+n.
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4.2 States

Compose space of states from free particle and oscillators.

• Momentum eigenstates for free particle |q〉.
• HO vacuum |0〉 and excitations for each mode/orientation.

De�ne string vacuum state |0; q〉

pµ|0; q〉 = qµ|0; q〉, αL/R,µ
n |0; q〉 = 0 for n > 0.

Problem: negative norm states

|n, µ; q〉 := αµ−n|0; q〉, |n, µ; q|2 = 〈0; q|αµnα
µ
−n|0; q〉 = nηµµ.

State not allowed by Virasoro constraints. General resolution: impose Virasoro
constraints.

4.3 Light Cone Quantisation

Continue covariant quantisation later. Fix light cone gauge instead; only physical
states.

Resulting commutators lead to positive de�nite states[
αL,a
m , αL,b

n

]
=
[
αR,a
m , αR,b

n

]
= mδabδm+n.

Remember classical mass and residual constraint

M2 =
4

κ2

∞∑
m=1

~αL
−m · ~αL

m =
4

κ2

∞∑
m=1

~αR
−m · ~αR

m.

Operator ordering matters! A priori free to choose. Assume normal ordering plus
new constants aL/R:

M2 =
4

κ2

(
∞∑
m=1

~αL
−m · ~αL

m − aL
)

=
4

κ2

(
∞∑
m=1

~αR
−m · ~αR

m − aR
)
.

Combination measures string �level�

N :=
∞∑
m=1

~α−m · ~αm =
∞∑
m=1

mNm with Nm :=
1

m
~α−m · ~αm.

Mass and constraint in terms of string level

M2 =
4

κ2
(NL − aL) =

4

κ2
(NR − aR).

4.4 String Spectrum

Mass depends on string level. Quantisation of string level −→ quantisation of
mass. Level matching: NL − aL = NR − aR.
Understand string states at each level; HO's.
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Vacuum State. De�ne vacuum state |0; q〉

~αL/R
n |0; q〉 = 0 for n > 0.

Level zero: NL = NR = 0. Spin zero.

For physical state:

aR = aL = a, M2 = −4a

κ2
.

So far so good: spin-0 particle with M = 2κ−1
√
−a. a ≤ 0?! Spatial extent: HO

wave function ∼ κ.

First Level. Lowest excited state has N = 1. Level matching and aL = aR

implies NL = NR = 1. One excitation ~α−1 each from left/right movers

|ab; q〉 = αL,a
−1α

R,b
−1 |0; q〉.

(D − 2)2 states of mass M = 2κ−1
√

1− a.
Spin under transverse rotations. Three combinations:

|(ab); q〉 := |ab; q〉+ |ba; q〉 − 2δab
D − 2

|cc; q〉,

|[ab]; q〉 := |ab; q〉 − |ba; q〉,
|1; q〉 := |cc; q〉.

Transformation properties under SO(D − 2):

state indices Young tab. �spin�
|(ab); q〉 symmetric, traceless 2
|[ab]; q〉 anti-symmetric 1
|1; q〉 singlet • 0

Stabiliser (little group) for massive particle is SO(D− 1). Can �t these SO(D− 2)
reps. into SO(D − 1) reps.? No!

Only way out: massless particle; stabiliser SO(D − 2). set a = aR = aL = 1.

Three types of particles:

• |(ab); q〉: massless spin-2 �eld. okay as free �eld.
Weinberg�Witten: interactions are forbidden. except for gravitational
interactions: graviton!
• |[ab]; q〉: massless 2-form �eld (Kalb�Ramond).
Bµν with 1-form gauge symmetry δBµν = ∂µεν − ∂νεµ.
• |1; q〉: massless scalar particle (dilaton).
di�erent from string vacuum |0; q〉.

What we have learned:

• Interacting string theory includes gravity! κ is Planck scale.
• Graviton plus massless 2-form and scalar particles. Spatial extent ∼ κ;
practically point-like.
• a = aR = aL = 1.
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Tachyon. Revisit string vacuum |q, 0〉: M2 = −4/κ2 < 0. Tachyon!

Problem? Not really, compare Goldstone/Higgs mechanism:

• Unstable vacuum at local maximum of a potential.
• Physical ground state at local minimum. No tachyon!
• Unclear if minimum exists. Where? What properties?

• Let us ignore. Indeed tachyon absent for superstrings!

Higher Levels. Levels zero and one work out. what about higher levels?

level excitations SO(D − 2) SO(D − 1)

0 · • •
1 αa−1 ?

2 αa−1α
b
−1 + •

αa−2
3 αa−1α

b
−1α

c
−1 +

αa−1α
b
−2 + + •

αa−3
4 αa−1α

b
−1α

c
−1α

d
−1 + + •

αa−1α
b
−1α

c
−2 + + +

αa−2α
b
−2 + •

αa−3α
b
−1 + + • •

αa−4
. . . . . . . . . . . .

All higher levels combine into proper SO(D − 1) reps.. Level matching: need to
square reps..

• String describes collection of in�nitely many particle types.
• Various vibration modes might correspond to elementary particles. Including
gravity.
• intrinsic particle extent κ. κ is Planck scale � observed: Point-like particles!
• few light particles; all others at Planck mass; 1 tachyon?!
• very high excitations are long strings. mostly classical behaviour. M � 1/κ
superheavy.
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Regge Trajectories. Maximum spin (symmetric indices) increases linearly with
level S = 2N

M2 =
2S − 4a

κ2
,

called leading Regge trajectory:

• α′ = κ2 is Regge slope.
• 2a is Regge intercept, spin of massless particle.

Subleading trajectories for lower spins (indices anti-symmetric and in trace).

Qualitative similarity to hadron spectrum:

• Regge trajectories for hadronic resonances observed.
• 1/κ is QCD scale ' 1 GeV
• Intercept a ≈ −1

2
rather than a = 1.

• another problem, see later.
• qualitative description of QCD �ux tubes.

4.5 Anomalies

In light cone gauge we have broken manifest SO(D − 1, 1) Lorentz symmetry to a
SO(D − 2) subgroup.

• Consequently spectrum of quantum strings organises manifestly into SO(D − 2)
multiplets.
• Almost all multiplets �t into SO(D − 1) multiplets.
• Mass assignments �ll Poincaré multiplets for aL = aR = 1.
• Poincaré symmetry broken unless aL = aR = 1.

Anomaly: Failure of classical symmetry in quantum theory.

Sometimes okay, not here, want strings to propagate on Minkowski background
with intact Poincaré symmetry.

So far only counting, more severe problem in algebra. Commutator [M−a,M−b]
receives contributions from [α−, αa]:

[M−a,M−b] =
∞∑
n=1

((
D − 2

24
− 1

)
n+

(
a− D − 2

24

)
1

n

)
. . .

vanishes if and only if D = 26 and a = 1. String theory predicts twenty-six
spacetime dimensions.
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Shortcut derivation: reconsider nature of intercept a. a is sum of HO ground state
energies 1

2
ωn = 1

2
n

a = −
∞∑
n=1

(D − 2)1
2
ωn = −1

2
(D − 2)

∞∑
n=1

n.

Sum divergent, black magic helps: ζ-function regularisation

ζ(x) :=
∞∑
k=1

1

kx
, i.e. a = −1

2
(D − 2)ζ(−1) =

D − 2

24
.

Analytical continuation ζ(−1) = − 1
12

and a = 1 predicts D = 26! Murky
derivation yields correct prediction.

4.6 Covariant Quantisation

In LC gauge Poincaré symmetry is subject to anomaly, but can also keep Poincaré
manifest: Covariant quantisation. See how spectrum arises in covariant approach.
Consider only L or R oscillators for simplicity.

Vacuum State. |0; q〉 de�ned as before. Satis�es

Ln>0|0; q〉 = 0 and L0|0; q〉 =
κ2q2

4
|0; q〉.

State not annihilated by negative Virasoro modes. Instead 〈0; q|Ln<0 = 0 hence
〈0; q|(Ln − δna)|0; q〉 = 0.

Impose Virasoro constraints for physical states |Ψ〉

Ln>0|Ψ〉 = 0, L0|Ψ〉 = a|Ψ〉, 〈Ψ |(Ln − δna)|Ψ〉 = 0.

One Excitation. Generic ansatz for state

|ψ; q〉 := ψ · α−1|0; q〉.

Norm ψ̄ · ψ potentially negative. Virasoro constraint implies

L1|ψ; q〉 = α1 · α0|ψ; q〉 =
κ(ψ · q)√

2
|0; q〉 = 0.

Furthermore L0 = a = 1 implies q2 = 0. Then q · ψ = 0 removes negative norm
state(s). Remains:

• D − 2 states with positive norm.
• State with ψ = q is null. Does not contribute to physics.
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Two Excitations. Generic ansatz

|φ, ψ; q〉 := φµνα
µ
−1α

ν
−1|0; q〉+ ψµα

µ
−2|0; q〉.

Impose constraints L0, L1, L2 = 0 to �x q2, ψ, trφ.

Remains: , , • of SO(D − 1).

• State is positive de�nite.
• Ansatz for : φµν = qµρν + ρµqν with q · ρ = 0. Negative norm for 1 < a < 2.
Null state for a = 1!
• Ansatz for •: φµν = qµqν + ηµνσ. Negative norm for D < 1 or D > 26. Null state
for D = 26!

Virasoro Algebra. Algebra of quantum charges Ln reads

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n.

Latter term is central charge of Virasoro, c = D. We are interested in primary
states

Ln>0|Ψ〉 = 0, L0|Ψ〉 = a|Ψ〉.

Can apply representation theory of Virasoro algebra ⇒ CFT.

Proper treatment (BRST) includes ghosts. Classical conformal algebra when
D = 26 and a = 1

[Lm, Ln] = (m− n)Lm+n.

Here: Conformal algebra is anomalous. Anomaly shifted to Lorentz algebra in
light cone gauge.
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