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2 Relativistic Point Particle

Let us start slowly with something else: a relativistic particle. Here we will
encounter several issues of string theory, but in a more familiar setting. There are
many formulations, we will discuss several.

2.1 Non-Relativistic Actions

First: a free non-relativistic point particle ~x(t). Action with resulting equations of
motion (e.o.m.):

S[~x] =

∫
dt 1

2
m~̇x(t)2, ~̈x(t) = 0.

Momentum and energy from Hamiltonian formulation:

~p(t) =
∂S[~x]

∂~̇x(t)
= m~̇x(t), E(t) = H(t) =

~p(t)2

2m
.

Note: functional variation removes the integral.

Promote the above to a relativistic particle:

S = −
∫
dtmc

√
c2 − ~̇x2 ≈

∫
dt
(
−mc2 + 1

2
m~̇x2 + 1

8
mc−2~̇x4

)
.

Derive e.o.m.:
(c2 − ~̇x2)~̈x+ (~̇x · ~̈x)~̇x = 0.

They imply collinearity ~̈x = α~̇x. Substitute to get αc2~̇x = 0 hence ~̈x = 0.
Momentum and energy read

~p =
mc~̇x√
c2 − ~̇x2

, E = c
√
m2c2 + p2 .

Fine, but is not manifestly relativistic: Non-relativistic formulation of a relativistic
particle. Want a manifestly relativistic formulation using 4-vectors Xµ = (ct, ~x)
and Pµ = (E/c, ~p). Let us set c = 1 for convenience from now on.

• Momentum Pµ is already a good 4-vector:

P 2 = −E2 + ~p2 = −m2.

Mass shell condition P 2 = −m2 manifestly relativistic. But origin/role of ~p and
E is quite distinct.
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• Position Xm(t) = (t, ~x(t)) and action make explicit reference to time t (in a
particular Lorentz frame)

S = −
∫
dtm

√
−
(
dX(t)

dt

)2

.

• Note that Hamiltonian framework distinguishes between space and time:
Explicit reference to time derivatives.

2.2 Worldline Action

Notice: above action measures Lorentz-invariant proper time s of the particle's
path Xµ(t) in spacetime (worldline)

S = −m
∫
ds, where ds2 = −dX2.

Proper time depends only on the location of the worldline, but not on a particular
Lorentz frame (de�nition of t) or parametrisation of the worldline (through t).

Let us assume an arbitrary parametrisation Xµ(τ) of the worldline through some
curve parameter τ . The proper time action reads (now dot denotes d/dτ)

S = −
∫
dτ m

√
−
(
dX(τ)

dτ

)2

= −
∫
dτ m

√
−Ẋ2 .

Nice manifestly relativistic formulation. Notice: 4 undetermined functions Xµ(τ)
instead of 3 undetermined functions ~x(t); new function t(τ).

Use this as starting point, derive equations of motion

Ẋ2Ẍµ = (Ẋ · Ẍ)Ẋµ.

Implies collinearity Ẍµ = cẊµ for all τ with variable c(τ). Meaning: worldline
straight.

Next derive momenta as derivatives of S w.r.t. Ẋµ

Pµ =
mẊµ√
−Ẋ2

.
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Obey mass shell condition P 2 = −m2!

Only three independent Pµ but four independent Xµ!
Moreover naive Hamiltonian is strictly zero H = 0!
Signals presence of constraint and gauge invariance:

• Reparametrizing τ ′ = f(τ) has no e�ect on physics.
• Redundancy of description: worldline coordinate τ .
• One linear dependency among the e.o.m. for Xµ.
• Gauge invariance e�ectively removes one Xµ, e.g. time t(τ).
• Situation inconvenient for Hamiltonian framework/QM.
• Better to �x a gauge, many choices, pick a convenient one.

Obtained a fully relativistic formulation, but packaged with complication of gauge
invariance. In fact, gauge invariance often considered a virtue: Symmetry!

Above worldline action has two further drawbacks:

• Is non-polynomial; inconvenient for quantisation.
• Does not work for massless particles m = 0.

2.3 Polynomial Action

There is an equivalent action with an auxiliary variable e(τ)

S =

∫
dτ
(

1
2
e−1Ẋ2 − 1

2
em2

)
.

The resulting e.o.m. read

m2e2 + Ẋ2 = 0, eẌµ − ėẊµ = 0.

In combination they yield the same old equation for Xµ. The momentum
conjugate to Xµ reads Pµ = e−1Ẋµ, hence the equation of motion for e reduces to
P 2 = −m2. Momentum conjugate to e vanishes signalling a constraint.

Massless case m = 0 works at every step of above derivation, yields constant
P µ = e−1Ẋµ as well as P 2 = 0. Notice: e not �xed by e.o.m.; commonly gauge
freedom remains for massless case.

Field e has a nice geometrical interpretation: Einbein specifying a metric
gττ = −e2 on the worldline. All terms in the action are in the right combination;
remain invariant under changing worldline coordinates (e transforms according to
e′ = e dτ ′/dτ).

Here einbein e is a dynamical variable. Curiously, e.o.m. picks out metric induced
by ambient space. When substituting solution for e recover action of Sec. 2.2.

2.4 Various Gauges

We have freedom to �x one of the coordinates Xµ(τ) at will. Some more or less
useful choices:
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• Temporal Gauge. t(τ) = τ or t(τ) = ατ .
Reduces to non-relativistic treatment of Sec. 2.1.
• Spatial Gauge. z(τ) = ατ .
Works locally except at turning points of z(τ).
• Lightcone Gauge. x+(τ) := t(τ) + z(τ) = ατ .
Useful in some cases; prominent in string theory.
• Proper Time Gauge. ds = dτ .
Fixes t(τ) through integral

t(τ) =

∫ τ

dτ ′
√
1 + ~̇x(τ ′)2 .

Action becomes trivial S = −
∫
dτ ; deal with constraint.

• Constant Einbein. ė = 0.
In polynomial formulation, gauge �xing may involve e. Customary gauge choice
is constant e. E.o.m. reduces to

Ẍ = 0.

We replace dynamical variable e by a constant; we must remember its equation
of motion

Ẋ +m2e2 = 0.

In gauge �xed formulation it becomes constraint.

2.5 Quantisation

Quantisation can be done in several di�erent ways. Depends on the choice of
classical formulation. Let us pick polynomial action discussed in Sec. 2.3. For the
Hamiltonian formulation it is best to also �x a gauge; we will choose the einbein e
to be constant. Momenta P associated to X and resulting Hamiltonian read:

P = e−1Ẋ, H = 1
2
e
(
P 2 +m2

)
.

Conventionally, a state |Ψ〉 is given by a wave function of position variables and
time

|Ψ〉 =
∫
d4X Ψ(X, τ) |X〉.

Slightly more convenient to immediately Fourier transform to momentum space
|X〉 '

∫
d4P eiP ·X |P 〉

|Ψ〉 =
∫
d4P Ψ(P, τ) |P 〉, Ψ(P, τ) =

∫
d4X eiP ·XΨ(X, τ).

Schrödinger equation reads

iΨ̇ = HΨ = i
2
e
(
P 2 +m2

)
Ψ.

Obviously, solved by

Ψ(P, τ) = exp
(
− i

2
e(P 2 +m2)τ

)
Φ(P ).
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Need to remember that system is constrained; wave function must vanish whenever
constraint not satis�ed:

(P 2 +m2)Ψ(P, τ) = 0.

In e�ect, physical states Ψ(P, τ) = Φ(P ) are independent of τ . Makes perfect
sense: worldline coordinate τ unphysical. Schrödinger equation governing
τ -evolution replaced by constraint P 2 +m2 = 0 (governing t-evolution).

Fourier transform wave function back to position space Φ(X); constraint becomes
the Klein�Gordon equation for spin-0 �eld

(−∂2 +m2)Φ(X) = 0.

2.6 Interactions

Obviously, free particle is easy; eventually would like to include interactions. Let
us sketch how to add interactions with external potentials and with other particles:

Electrical and Gravitational Fields. Coupling to electrical and gravitational
�elds takes a very geometric form

S =

∫
dτ
(

1
2
e−1gµν(X)ẊµẊν − 1

2
em2 + Aµ(X)Ẋµ

)
.

Aµ potential for the electromagnetic �eld Fµν = ∂µAν + ∂νAµ. Likewise gµν is the
gravitational potential; takes the form of the metric of a curved spacetime.

These are �xed external �elds: Una�ected by presence of particle, but in�uence its
motion. Note: Fields are evaluated at dynamical position Xµ(τ).

In quantum mechanics, one usually assumes weak interactions. Formally allows to
work with free quantum �elds; interactions are introduced in perturbative fashion.
When free particle enters potential �eld, it scatters o� of it. Dominant
contribution from single scattering; multiple interactions suppressed. Only in rare
instances, potentials can be handled exactly.

Interactions Among Particles. Local interactions: Several particles meet at
some spacetime point and split up, potentially into a di�erent number of particles.
In worldline formulation achieved by introducing vertices where several particle
worldlines meet:

This is not standard treatment of interaction. Typically interaction of n �elds:
term Φn in QFT action. Our method is not very convenient, but it works as well.
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Nevertheless instructive, mimics Feynman rules; It is the standard procedure for
string theory.

2.7 Conclusions

• Seen many equivalent formulations of same physical system.
• Had to deal with gauge invariance and constraints.
• Di�erent number of degrees of freedom (d.o.f.), but number of solutions (modulo
gauge) always the same.
• Quantised the free relativistic particle.
• Discussed interactions.
• Not always most convenient path chosen; but treatment of string will be
analogous.
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