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7 Conformal Field Theory

So far considered mostly string spectrum:

e equations of motion (local),
e closed/open periodicity conditions (global),
e quantisation.

Quantum mechanics of infinite tower of string modes av,.

Next will consider local picture on worldsheet: Fields X (§). Quantisation —
Quantum Field Theory (QFT). Will need for string scattering.

Reparametrisation invariance:
worldsheet coordinates £ artificial,
gauge fixing: conformal gauge,
worldsheet coordinates £ meaningful,

diffeomorphisms — residual conformal symmetry,
Conformal Field Theory (CEFT).

CFT: QFT making use of conformal symmetry.

e do not calculate blindly,
e structure of final results dictated by symmetry,
e conformal symmetry: large amount, exploit!

Let us scrutinise conformal symmetry:

e (Central framework in string theory,
e but also useful for many 2D statistical mechanics systems.

7.1 Conformal Transformations

Special coordinate transformation:

e all angles unchanged,
e definition of length can change,

Metric preserved up to scale

dz*  dx” |
g:L/V/([L',) = W W g.U'V(x) - f(x) g“/,/(x)

Action on Coordinates. Generally in D dimensions

v

Lorentz rotations x* — A*, x,
translations z# — x* + a”,
scale transformations / dila(ta)tions x* — sz,
conformal inversions (discrete) z# — x#/x?,
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e conformal boosts (inversion, translation, inversion).

Conformal group: SO(D,2) (rather: universal cover).

Action on Fields. E.g. a free scalar
S ~ /dD:c 30,8(x) 0"P(x).

e Manifest invariance under Lorentz rotations & translations
P'(z) = P(Ax + a).
e Invariance under scaling ' = sz requires
P (x) = s P2 P(s1).
e Invariance under inversions
() = (22~ P22 9(1/2).

Similar (but more complicated) rules for:

e scalar field ¢(z) with different scaling ¢'(x) = s2¢(sx),
e spinning fields p,, ...,
e derivatives 0,9, 9,0,9, 0*, ....

2D Conformal Symmetries. QFT’s in 2D are rather tractable. CFT’s in 2D
are especially simple:

e Conformal group splits SO(2,2) ~ SL(2,R), x SL(2,R)g
e SL(2,R)/r act on coordinates as (drop L/R)

b
e

L/R L/R

BYR are two translations, o are two
conformal boosts.

e SL(2,R) /g extends to infinite-dimensional Virasoro

5£L/R _ EL/R(éL/R) _ Z €7I;/R<£L/R)lfn.

e Boundaries typically distorted by Virasoro. Only subalgebra preserves
boundaries, e.g. SL(2,R).

are rotations and scaling,

7.2 Conformal Correlators

In a quantum theory interested in

e spectrum of operators (string spectrum),
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e probabilities,
e expectation value of operators on states.

In QFT compute (vacuum) expectation values:

e momentum eigenstates: particle scattering, S-matrix

<§17 CTZ? s '|S’ﬁlaﬁ27 . > - <0|a(ql)a(§2) c S aT(ﬁQ)aT(ﬁl)|0>
e position eigenstates: time-ordered correlation functions

(B(1)B(xs) ...) = (O|T[B(a1)B(x2) . . .]|0)

Correlator of String Coordinates. Can compute a worldsheet correlator
using underlying oscillator relations

2
(01X (£2)X"(€1)10) = = 5 log (exp(i€}) — exp(ic}))
2
— % nt log(exp(zf?R) — exp(i{?)) +...

Can reproduce from CFT? Scalar ¢ of dimension A:

(9(x1)@(x2)) = F (21, 22)

Correlator should be invariant!

e Translation invariance
F(ZEl,l’Q) = F(Il — [L‘Q) = F(Ilg).

Just one vector variable.
e Invariance under Lorentz rotations

F(z15) = F(x1,).

Just a scalar variable.
e Scaling invariance

(D(x1)0(w2)) = (¢ (21)¢ () = %2 (S(521)B(522)),

hence F(22,) = s> F(s?22,) and

F(‘T%z) = 73\A

—~
=N
N
N
DS

Just a (normalisation) constant N!
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Logarithmic Correlator. Our scalar has scaling dimension A = (D — 2)/2 = 0.
Constant correlator F'(x1,z5) = N?! Not quite: Take limit D = 24 2¢, N = Ny /e

Ny
6(1’%2)6

Note: A = 0 correlator can be logarithmic. Still not there. Use LC coordinates

2 _ _,L_R : :
Ty = —X7,x7y and identify

o = exp(ic"), o = exp(ich).

Why the identification?

N.
F(ZL‘hZEQ): —>T2—N210gl’%2+

e 2D conformal transformation,
e closed string periodicity o = o + 27, but x
e choose appropriate coordinates for boundaries.

String coordinates are functions of z™/R except for linear dependence on
7 = —Llog(z*2®). Better choice of field X*/0z"/R:

L/R unique!

1,2, uv

(010X (9) L X (1)[0) =

More manifestly conformal!

Wick Rotation. In this context: Typically perform Wick rotation 7 = —i7
(now T real)

exp(i€”) = exp(7 —io) =: Z, exp(i&") = exp(F +io) =: 2.

Cylindrical coordinates for (euclidean) string: \w

]

e radius |z| is exponential euclidean time 7,
e o is angular coordinate (naturally periodic).

Standard treatment: Euclidean CEFT

i

Worldsheet coordinates z and z are complex conjugates.
Fields are functions f(z, z) of complex z.
String coordinates are holomorphic functions

X(2,2) = X(2) + X(2).

Conformal transformations are holomorphic.
Employ powerful functional analysis: residue theorems.

Euclidean WS convenient and conventional. Could as well work on Minkowski
worldsheet, nothing lost!
7.3 Local Operators

We understand the basic string coordinate field X (z,z) = X(z) + X(2), or better
0X(z) and 90X (2).

Basic objects in a CFT are local operators O;(z, 2):
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products of fields X and derivatives 0"0" X,

evaluated at the same point (z, Z) on the worldsheet,
normal ordered O; = :...: implicit (no self-correlations),

for example O; = :(0X)?, 04" = : XH9XV: — : XVOXH:, .. ..

Local operators behave

e classically as the sum of constituents,
e quantum-mechanically as independent entities: recall quantum effects in
Virasoro charges (0X)?!

Main task: classify local operators.

Descendants. All local operators transform under shifts (dz,02) = (¢, €) as
50 = €00 + €00.

An operator 9"0"Q is called a descendant of O. Shifts are symmetries: No need to
consider descendants.

Weights. Most local operators classified by weights (h, h). Transformation under
(2,2) = (s2,82) or §(z,2) = (ez,€2)

O(z,2) = ShEB(’)(sz, 5z),
50 = €(hO + 200) + €(hO + 200).

Transformations are scaling and rotation, hence scaling dimension A = h + h and
spin S = h — h.

For unitary CFT: Both h, h are real and non-negative. E.g. weights: X — (1,0),
(0X)? — (2,0).

Products of local operators O = 010

e total weight is sum of individual weights classically;
e weights usually not additive in quantum theory!

Note: X does not have proper weights, but 0.X does.

Quasi-Primary Operators. A local operator with weights (h, h) is called

quasi-primary if )
dz\" (dz"\"
/ -\ -
O'(z,2z) = (_dz) (_d2> O, 7).

for all SL(2,C) Mobius transformations
. az+b L, az+b

ez td’ ez +d
For infinitesimal boosts §(z,z) = (e2%,€z%) it must satisfy
50 = €(2hz0 + 2200) + €(2hz0 + 2200).

Descendants of quasi-primaries are not quasi-primary.
Need to consider only quasi-primary operators.
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Primary Operators. An operator is called primary if it satisfies the
quasi-primary conditions for all transformations

(2,2) = (£(2),2(2)) or (d2,02) = (C(2),((2)).

Infinitesimally

50 = (hOC O + COO) + (RO O + € HO).

Note: Correlators are only locally invariant. Only a subclass of conformal
transformations (e.g. Mobius) leaves correlators globally invariant.

Example. Operator O* = 9X* is primary; (h, h) = (1,0).
_%HQTIMV
(21— 22)?

(0103) =

Invariance under §z = z!=":

e exact for |n| <1 (Mobius),
e up to polynomials for [n| > 1 (small w.r.t. 1/(z; — 22)?).

State-Operator Map. There is a one-to-one map between

e quantum states on a cylinder R x S! and
e local operators (at z = 0).

Consider the conformal map

z=exp(+i(), Z=exp(=i(), (. (=0 Fif.
State given by wave function at constant 7 = —Im (:

Time evolution is radial evolution in z plane.

Asymptotic time 7 — —oo corresponds to z = 0.

Local operator at z = 0 to excite asymptotic wave function.
Unit operator 1 corresponds to vacuum.

7.4 Operator Product Expansion
In a CFT we wish to compute correlation functions

(O1(£)04(&2) - On(&n)) = Fra. -

Suppose & = &; then can Taylor expand

WK

01(61)02(&2) = > — (& — &1)"01(£1)0"Ox(&1).

1
n!

Il
=)

n

Converts local operators at two points into a sum of local operators at a single
point. Classical statement is exact.
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Quantum OPE. Quantum-mechanically there are additional contributions from
operator ordering (normal ordering implicit). Still product of local operators can
be written as sum of some local operators

O1(&)0x(6) = ) Ca(&e — £0)Oi(&1):

bb

More precise formulation with any (non-local) operators “

(O01(6)0s(&) - ) = Z Ciy E)(0:(&) - ).

This statement is called Operator Product Expansion (OPE). Cf;(&; — &) are
called structure constants & conformal blocks. Sum extends over all local
operators (including descendants).

Idea: Every (non-local) operator can be written as an expansion in local operators.
Analog: Multipole expansion.

It works exactly in any CFT and is a central tool.

Higher Points. Can formally compute higher-point correlation functions:

i
Fias. . n = E .C12Fz‘3...n
1

Apply recursively to reduce to single point.

One-point function is trivial (except for unit operator 1)

Higher-point function reduced to sequence of ij:

vast simplification,

need only C}; for correlators in CFT,

hard to compute in practice,

result superficially depends on OPE sequence (crossing).

Lower Points. Two-point function is OPE onto unity

=) ChOW) =0l

Three-point function determines OPE constants
Fiji = (0,0,00) = Y Ci{O0) = FuCy;

Lower-point functions restricted by conformal symmetry:

e Two-point function only for related operators.
e No two-point or three-point conformal invariants. Can map triple of point to
any other triple of points.
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e Coordinate dependence of two-point function fixed
Ni;
& — &P
Numerator N depends on dimension, spin, level of descendant and operator

normalisation.
e Coordinate dependence of three-point function fixed

Nijk
€ — &1291&5 — &kl %] & — il A
with scaling weights A;; = A; + A; — Ay, Numerators N depend on dimension,

spin, level of descendant and operator normalisation.
e Three-point functions exist for three different operators.

Fyj ~

E]k ~ Aij

Normalise operators, then CFT data consists of

e scaling dimensions, spins: spectrum,
e coefficients of three-point function: structure constants.

7.5 Stress-Energy Tensor

The Noether currents for spacetime symmetries are encoded into the conserved
stress-energy tensor T,z

1

4 K?

Top = ((0aX) - (95X) = 3masm™ (0,X) - (95X))

Object of central importance for CFT/OPE! Trace is exactly zero: Weyl
symmetry. Remaining components 71, and Tgrg translate to euclidean

1 _
T = —F(ax)z, T=—-—(0X).
Ignore string physical state condition T =T = 0.

Conservation. Current J(z) = ((2)T(2) for z = ((z). Classical conservation
0J = 0 by means of e.o.m.. QFT: Conservation replaced by Ward identity:

0J(2)O(w,w) = 2w 6*(z — w, Z — w) 00 (w, ).
Current J conserved except at operator locations.

OPE: Integrate z over small ball around w

1
— d*z ...
2m |[z—w|<e
Evaluate integration over z ([ d?20...= —i [dz...)
1 _ _
- dz J(2)O(w,w) = 60 (w, w).

|z—w|=€

Similarly for 7. Consider only holomorphic part.
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Stress-Energy OPE. Derive OPE of O and T.
First consider translation dz = ¢, 0O = edO. Need simple pole to generate residue
00(w, w)
+ 14
Z—w

T(z)O(w,w) = ...

Further terms with higher poles and polynomials in “...”.

Suppose O has holomorphic weight h. Consider scaling 6z = ez,
00 = €(hO + 200). Substitute and require following poles in OPE
hO(w, w 00 (w, w

(w,w) , 90(w,@)

(z —w)? z—w

T(2)O(w,w) = ...+

Next suppose O is quasi-primary. Consider scaling 6z = €22,

80 = €(2hzO + 2290). Substitute and require absence of cubic pole

0 N hO(w, w) N 00(w,w) N

(z—w)?  (z—w)? Z—w

T(2)O(w,w) = ...+

Finally suppose O is primary. Leads to absence of higher poles
hO(w, w 00(w, w
_hO@w,m) | 90@w,@) |

(z —w)? zZ—w

T(2)O(w,w)

Note that derivatives shift poles by one order.
Descendants are not (quasi-)primaries.

OPE of stress-energy tensor. Compute explicitly (Wick):

c/2 N 2T (w) +8T(w)+

T(2)T(w) = . 5

(z—w)*t  (z—w) zZ—w

Result applies to general CFT’s. Virasoro algebral!

T is a local operator,

T has holomorphic weight h = 2 (classical),
T is quasi-primary,

T is not primary (unless ¢ = 0),

quartic pole carries central charge ¢ = D.

Conformal transformations for 7" almost primary:

5T = 629T + 2062 T + 1—028352,
) - (Z) (1) + Ss(2.2)
=\ SRR TRASER) A

S(, 2) = a3z dz' _1_3 AN A
SRR dz 2 \ dz? dz

Additional term S is Schwarzian derivative. Zero for Mobius transformations.
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