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2 Relativistic Point Particle

Let us start slowly with something else: a relativistic particle. Here we will
encounter several issues of string theory, but in a more familiar setting. There are
many formulations, we will discuss several.

2.1 Non-Relativistic Actions

First: a free non-relativistic point particle Z(t). Action with resulting equations of
motion (e.o0.m.):

s3] = / dt im0, (t) =o.

>
Momentum and energy from Hamiltonian formulation:
N 2l i R plt)?
t) = — = mx(t), E(t)=H(t) =
p(t) o7 () (t) (t)=H(t) =~

Note: functional variation removes the integral.

Promote the above to a relativistic particle:

S = —/dtmc\/ 2 -2 /dt (=me® + %mfg - %mc‘2 ;4).
Derive e.o.m.: o o
(2 — )7 + (7 7)i = 0.

They imply collinearity Z = aZ. Substitute to get ac?Z = 0 hence 7 = 0.
Momentum and energy read

med
p=—, E = c\/m2c? + p?.

c? — 72

Fine, but is not manifestly relativistic: Non-relativistic formulation of a relativistic
particle. Want a manifestly relativistic formulation using 4-vectors X* = (ct, ¥)
and P, = (E/c,p). Let us set ¢ =1 for convenience from now on.

e Momentum P, is already a good 4-vector:
P?*= —E? 4+ p* = —m?

Mass shell condition P? = —m? manifestly relativistic. But origin/role of p and
E is quite distinct.
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e Position X™(t) = (¢,Z(t)) and action make explicit reference to time ¢ (in a

particular Lorentz frame)
2
_/dtm‘ - (%) |
dt

e Note that Hamiltonian framework distinguishes between space and time:
Explicit reference to time derivatives.

2.2 Worldline Action

Notice: above action measures Lorentz-invariant proper time s of the particle’s
path X*#(t) in spacetime (worldline)

S = —m/ds, where ds* = —dX?.

Proper time depends only on the location of the worldline, but not on a particular
Lorentz frame (definition of ¢) or parametrisation of the worldline (through ¢).

Let us assume an arbitrary parametrisation X#(7) of the worldline through some
curve parameter 7. The proper time action reads (now dot denotes d/dr)

e (BOY -~ [

dT
Nice manifestly relativistic formulation. Notice: 4 undetermined functions X*(7)
instead of 3 undetermined functions Z(t); new function (7).

Use this as starting point, derive equations of motion
XXM = (X X )X "
Implies collinearity X# = ¢X* for all 7 with variable ¢(7). Meaning: worldline
straight. v
Next derive momenta as derivatives of S w.r.t. X*
mX,

P, = ——=£
_X2

I
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Obey mass shell condition P? = —m?!

Only three independent P, but four independent X*!
Moreover naive Hamiltonian is strictly zero H = 0!
Signals presence of constraint and gauge invariance:

Reparametrizing 7" = f(7) has no effect on physics.
Redundancy of description: worldline coordinate 7.

One linear dependency among the e.o.m. for X*.

Gauge invariance effectively removes one X*, e.g. time ¢(7).
Situation inconvenient for Hamiltonian framework /QM.
Better to fix a gauge, many choices, pick a convenient one.

Obtained a fully relativistic formulation, but packaged with complication of gauge
invariance. In fact, gauge invariance often considered a virtue: Symmetry!

Above worldline action has two further drawbacks:

e [s non-polynomial; inconvenient for quantisation.
e Does not work for massless particles m = 0.

2.3 Polynomial Action

There is an equivalent action with an auxiliary variable e(7)

S = /dr (%e’le — %em2> :

The resulting e.o.m. read

m?e® + X% =0, eXH — XM =0,
In combination they yield the same old equation for X*. The momentum

conjugate to X* reads P, = e_lXH, hence the equation of motion for e reduces to
P? = —m?. Momentum conjugate to e vanishes signalling a constraint.

Massless case m = 0 works at every step of above derivation, yields constant
PH = e 1 X* as well as P? = (0. Notice: e not fixed by e.o.m.; commonly gauge
freedom remains for massless case.

Field e has a nice geometrical interpretation: Einbein specifying a metric
G-~ = —e? on the worldline. All terms in the action are in the right combination;
remain invariant under changing worldline coordinates (e transforms according to

¢ =edr'/dr).

Here einbein e is a dynamical variable. Curiously, e.0o.m. picks out metric induced
by ambient space. When substituting solution for e recover action of Sec. 2.2.

2.4 Various Gauges

We have freedom to fix one of the coordinates X*(7) at will. Some more or less
useful choices:
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e Temporal Gauge. (1) =7 or t(17) = ar.
Reduces to non-relativistic treatment of Sec. 2.1.
e Spatial Gauge. z(7) = ar.
Works locally except at turning points of z(7).
e Lightcone Gauge. x1(7) ;= t(7) + 2(7) = ar.
Useful in some cases; prominent in string theory.
e Proper Time Gauge. ds = dr.
Fixes ¢(7) through integral

t(r) = /Tdm/ugz(w)?.

Action becomes trivial S = — [ dr; deal with constraint.

e Constant Einbein. ¢ = 0.
In polynomial formulation, gauge fixing may involve e. Customary gauge choice
is constant e. E.o.m. reduces to

X =0.

We replace dynamical variable e by a constant; we must remember its equation
of motion
X +m?e? =0.

In gauge fixed formulation it becomes constraint.

2.5 Quantisation

Quantisation can be done in several different ways. Depends on the choice of
classical formulation. Let us pick polynomial action discussed in Sec. 2.3. For the
Hamiltonian formulation it is best to also fix a gauge; we will choose the einbein e
to be constant. Momenta P associated to X and resulting Hamiltonian read:

P=e¢'X, H:%e(P2+m2).

Conventionally, a state ) is given by a wave function of position variables and
time

@) = /d4X U(X,7)|X).

Slightly more convenient to immediately Fourier transform to momentum space
| X) ~ [d*P et |P)

W) = /d“PW(P, | P), W (PT)= /d4X XU (X, 7).
Schrédinger equation reads
W = HY = ie(P* + m?)W.
Obviously, solved by
W(P,7) = exp(—Le(P? +m?)T)®(P).
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Need to remember that system is constrained; wave function must vanish whenever
constraint not satisfied:

(P> +m*)¥(P,7) = 0.
In effect, physical states ¥ (P, 7) = ¢(P) are independent of 7. Makes perfect

sense: worldline coordinate 7 unphysical. Schrodinger equation governing
T-evolution replaced by constraint P? + m? = 0 (governing t-evolution).

Fourier transform wave function back to position space @(X); constraint becomes
the Klein—Gordon equation for spin-0 field

(—0* +m?)P(X) = 0.

2.6 Interactions

Obviously, free particle is easy; eventually would like to include interactions. Let
us sketch how to add interactions with external potentials and with other particles:

Electrical and Gravitational Fields. Coupling to electrical and gravitational
fields takes a very geometric form

S = /dT (%e_lguy(X)X“X” —lem® + AAX)X“) :

A, potential for the electromagnetic field F),, = 0,4, + 0,A,,. Likewise g, is the
gravitational potential; takes the form of the metric of a curved spacetime.

These are fixed external fields: Unaffected by presence of particle, but influence its
motion. Note: Fields are evaluated at dynamical position X*(7).

In quantum mechanics, one usually assumes weak interactions. Formally allows to
work with free quantum fields; interactions are introduced in perturbative fashion.
When free particle enters potential field, it scatters off of it. Dominant
contribution from single scattering; multiple interactions suppressed. Only in rare
instances, potentials can be handled exactly.

Interactions Among Particles. Local interactions: Several particles meet at
some spacetime point and split up, potentially into a different number of particles.
In worldline formulation achieved by introducing vertices where several particle
worldlines meet:

This is not standard treatment of interaction. Typically interaction of n fields:
term @" in QFT action. Our method is not very convenient, but it works as well.
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Nevertheless instructive, mimics Feynman rules; It is the standard procedure for
string theory.

2.7 Conclusions

e Seen many equivalent formulations of same physical system.

e Had to deal with gauge invariance and constraints.

e Different number of degrees of freedom (d.o.f.), but number of solutions (modulo
gauge) always the same.

e Quantised the free relativistic particle.

e Discussed interactions.

e Not always most convenient path chosen; but treatment of string will be
analogous.
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