
Introduction to String Theory
ETH Zurich, HS11

Chapter 7
Prof. N. Beisert

7 Conformal Field Theory

So far considered mostly string spectrum:

• equations of motion (local),
• closed/open periodicity conditions (global),
• quantisation.

Quantum mechanics of in�nite tower of string modes αn.

Next will consider local picture on worldsheet: Fields X(ξ). Quantisation →
Quantum Field Theory (QFT). Will need for string scattering.

Reparametrisation invariance:

• worldsheet coordinates ξ arti�cial,
• gauge �xing: conformal gauge,
• worldsheet coordinates ξ meaningful,
• di�eomorphisms → residual conformal symmetry,
• Conformal Field Theory (CFT).

CFT: QFT making use of conformal symmetry.

• do not calculate blindly,
• structure of �nal results dictated by symmetry,
• conformal symmetry: large amount, exploit!

Let us scrutinise conformal symmetry:

• Central framework in string theory,
• but also useful for many 2D statistical mechanics systems.

7.1 Conformal Transformations

Special coordinate transformation:

• all angles unchanged,
• de�nition of length can change,

Metric preserved up to scale

g′µ′ν′(x
′) =

dxµ

dx′µ′
dxν

dx′ν′
gµν(x)

!
= f(x) gµ′ν′(x)

Action on Coordinates. Generally in D dimensions

• Lorentz rotations xµ → Λµνx
ν ,

• translations xµ → xµ + aµ,
• scale transformations / dila(ta)tions xµ → sxµ,
• conformal inversions (discrete) xµ → xµ/x2,
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• conformal boosts (inversion, translation, inversion).

Conformal group: SO(D, 2) (rather: universal cover).

Action on Fields. E.g. a free scalar

S ∼
∫
dDx 1

2
∂µΦ(x) ∂µΦ(x).

• Manifest invariance under Lorentz rotations & translations

Φ′(x) = Φ(Λx+ a).

• Invariance under scaling x′ = sx requires

Φ′(x) = s(D−2)/2 Φ(sx).

• Invariance under inversions

Φ′(x) = (x2)−(D−2)/2 Φ(1/x).

Similar (but more complicated) rules for:

• scalar �eld φ(x) with di�erent scaling φ′(x) = s∆φ(sx),
• spinning �elds ρµ, . . . ,
• derivatives ∂µΦ, ∂µ∂νΦ, ∂

2Φ, . . . .

2D Conformal Symmetries. QFT's in 2D are rather tractable. CFT's in 2D
are especially simple:

• Conformal group splits SO(2, 2) ' SL(2,R)L × SL(2,R)R

• SL(2,R)L/R act on coordinates as (drop L/R)

ξ′ =
aξ + b

cξ + d
, δξ = β + αξ − γξ2;

βL/R are two translations, αL/R are rotations and scaling, γL/R are two
conformal boosts.
• SL(2,R)L/R extends to in�nite-dimensional Virasoro

δξL/R = εL/R(ξL/R) =
∑

n
εL/Rn (ξL/R)1−n.

• Boundaries typically distorted by Virasoro. Only subalgebra preserves
boundaries, e.g. SL(2,R).

7.2 Conformal Correlators

In a quantum theory interested in

• spectrum of operators (string spectrum),
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• probabilities,
• expectation value of operators on states.

In QFT compute (vacuum) expectation values:

• momentum eigenstates: particle scattering, S-matrix

〈~q1, ~q2, . . .|S|~p1, ~p2, . . .〉=〈0|a(~q1)a(~q2) . . . S . . . a†(~p2)a†(~p1)|0〉

• position eigenstates: time-ordered correlation functions

〈Φ(x1)Φ(x2) . . .〉 = 〈0|T [Φ(x1)Φ(x2) . . .]|0〉

Correlator of String Coordinates. Can compute a worldsheet correlator
using underlying oscillator relations

〈0|Xν(ξ2)Xµ(ξ1)|0〉 =− κ2

2
ηµν log

(
exp(iξL

2 )− exp(iξL
1 )
)

− κ2

2
ηµν log

(
exp(iξR

2 )− exp(iξR
1 )
)

+ . . .

Can reproduce from CFT? Scalar φ of dimension ∆:

〈φ(x1)φ(x2)〉 = F (x1, x2)

Correlator should be invariant!

• Translation invariance

F (x1, x2) = F (x1 − x2) =: F (x12).

Just one vector variable.
• Invariance under Lorentz rotations

F (x12) = F (x2
12).

Just a scalar variable.
• Scaling invariance

〈φ(x1)φ(x2)〉 !
= 〈φ′(x1)φ′(x2)〉 = s2∆〈φ(sx1)φ(sx2)〉,

hence F (x2
12) = s2∆F (s2x2

12) and

F (x2
12) =

N

(x2
12)∆

.

Just a (normalisation) constant N !
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Logarithmic Correlator. Our scalar has scaling dimension ∆ = (D − 2)/2 = 0.
Constant correlator F (x1, x2) = N?! Not quite: Take limit D = 2 + 2ε, N = N2/ε

F (x1, x2) =
N2

ε(x2
12)ε
→ N2

ε
−N2 log x2

12 + . . . .

Note: ∆ = 0 correlator can be logarithmic. Still not there. Use LC coordinates
x2

12 = −xL
12x

R
12 and identify

xL = exp(iξL), xR = exp(iξR).

Why the identi�cation?

• 2D conformal transformation,
• closed string periodicity σ ≡ σ + 2π, but xL/R unique!
• choose appropriate coordinates for boundaries.

String coordinates are functions of xL/R except for linear dependence on
τ = − i

2
log(xLxR). Better choice of �eld ∂Xµ/∂xL/R:

〈0|∂LX
ν(x2)∂LX

µ(x1)|0〉 =
−1

2
κ2ηµν(

xL
2 − xL

1

)2

More manifestly conformal!

Wick Rotation. In this context: Typically perform Wick rotation τ = −iτ̃
(now τ̃ real)

exp(iξL) = exp(τ̃ − iσ) =: z̄, exp(iξR) = exp(τ̃ + iσ) =: z.

Cylindrical coordinates for (euclidean) string:

• radius |z| is exponential euclidean time τ̃ ,
• σ is angular coordinate (naturally periodic).

Standard treatment: Euclidean CFT

• Worldsheet coordinates z and z̄ are complex conjugates.
• Fields are functions f(z, z̄) of complex z.
• String coordinates are holomorphic functions

X(z, z̄) = X(z) + X̄(z̄).

• Conformal transformations are holomorphic.
• Employ powerful functional analysis: residue theorems.

Euclidean WS convenient and conventional. Could as well work on Minkowski
worldsheet, nothing lost!

7.3 Local Operators

We understand the basic string coordinate �eld X(z, z̄) = X(z) + X̄(z̄), or better
∂X(z) and ∂̄X̄(z̄).

Basic objects in a CFT are local operators Oi(z, z̄):
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• products of �elds X and derivatives ∂n∂̄n̄X,
• evaluated at the same point (z, z̄) on the worldsheet,
• normal ordered Oi = :. . .: implicit (no self-correlations),
• for example O1 = :(∂X)2:, Oµν2 = :Xµ∂Xν :− :Xν∂Xµ:, . . . .

Local operators behave

• classically as the sum of constituents,
• quantum-mechanically as independent entities: recall quantum e�ects in
Virasoro charges (∂X)2!

Main task: classify local operators.

Descendants. All local operators transform under shifts (δz, δz̄) = (ε, ε̄) as

δO = ε∂O + ε̄∂̄O.
An operator ∂n∂̄n̄O is called a descendant of O. Shifts are symmetries: No need to
consider descendants.

Weights. Most local operators classi�ed by weights (h, h̄). Transformation under
(z, z̄)→ (sz, s̄z̄) or δ(z, z̄) = (εz, ε̄z)

O′(z, z̄) = shs̄h̄O(sz, s̄z̄),

δO = ε(hO + z∂O) + ε̄(h̄O + z̄∂̄O).

Transformations are scaling and rotation, hence scaling dimension ∆ = h+ h̄ and
spin S = h− h̄.
For unitary CFT: Both h, h̄ are real and non-negative. E.g. weights: ∂X → (1, 0),
(∂X)2 → (2, 0).

Products of local operators O = O1O2:

• total weight is sum of individual weights classically;
• weights usually not additive in quantum theory!

Note: X does not have proper weights, but ∂X does.

Quasi-Primary Operators. A local operator with weights (h, h̄) is called
quasi-primary if

O′(z, z̄) =

(
dz′

dz

)h(
dz̄′

dz̄

)h̄
O(z′, z̄′).

for all SL(2,C) Möbius transformations

z′ =
az + b

cz + d
, z̄′ =

āz̄ + b̄

c̄z̄ + d̄
.

For in�nitesimal boosts δ(z, z̄) = (εz2, ε̄z̄2) it must satisfy

δO = ε(2hzO + z2∂O) + ε̄(2h̄z̄O + z̄2∂̄O).

Descendants of quasi-primaries are not quasi-primary.
Need to consider only quasi-primary operators.
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Primary Operators. An operator is called primary if it satis�es the
quasi-primary conditions for all transformations

(z, z̄)→ (z′(z), z̄′(z̄)) or (δz, δz̄) = (ζ(z), ζ̄(z̄)).

In�nitesimally
δO = (h ∂ζ O + ζ ∂O) + (h̄ ∂̄ζ̄ O + ζ̄ ∂̄O).

Note: Correlators are only locally invariant. Only a subclass of conformal
transformations (e.g. Möbius) leaves correlators globally invariant.

Example. Operator Oµ = ∂Xµ is primary; (h, h̄) = (1, 0).

〈Oµ1Oν2〉 =
−1

2
κ2ηµν

(z1 − z2)2
.

Invariance under δz = z1−n:

• exact for |n| ≤ 1 (Möbius),
• up to polynomials for |n| > 1 (small w.r.t. 1/(z1 − z2)2).

State-Operator Map. There is a one-to-one map between

• quantum states on a cylinder R× S1 and
• local operators (at z = 0).

Consider the conformal map

z = exp(+iζ), z̄ = exp(−iζ̄), ζ, ζ̄ = σ ∓ iτ̃ .

State given by wave function at constant τ̃ = − Im ζ:

• Time evolution is radial evolution in z plane.
• Asymptotic time τ̃ → −∞ corresponds to z = 0.
• Local operator at z = 0 to excite asymptotic wave function.
• Unit operator 1 corresponds to vacuum.

7.4 Operator Product Expansion

In a CFT we wish to compute correlation functions〈
O1(ξ1)O2(ξ2) . . .On(ξn)

〉
= F12...n.

Suppose ξ1 ≈ ξ2; then can Taylor expand

O1(ξ1)O2(ξ2) =
∞∑
n=0

1

n!
(ξ2 − ξ1)nO1(ξ1)∂nO2(ξ1).

Converts local operators at two points into a sum of local operators at a single
point. Classical statement is exact.
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Quantum OPE. Quantum-mechanically there are additional contributions from
operator ordering (normal ordering implicit). Still product of local operators can
be written as sum of some local operators

O1(ξ1)O2(ξ2) =
∑

i
Ci

12(ξ2 − ξ1)Oi(ξ1).

More precise formulation with any (non-local) operators � . . .�〈
O1(ξ1)O2(ξ2) . . .

〉
=
∑

i
Ci

12(ξ2 − ξ1)
〈
Oi(ξ1) . . .

〉
.

This statement is called Operator Product Expansion (OPE). Ck
ij(ξ2 − ξ1) are

called structure constants & conformal blocks. Sum extends over all local
operators (including descendants).

Idea: Every (non-local) operator can be written as an expansion in local operators.
Analog: Multipole expansion.

It works exactly in any CFT and is a central tool.

Higher Points. Can formally compute higher-point correlation functions:

F123...n =
∑

i
ci12Fi3...n

Apply recursively to reduce to single point.

One-point function is trivial (except for unit operator 1)

〈Oi〉 = 0, 〈1〉 = 1.

Higher-point function reduced to sequence of Ck
ij:

• vast simpli�cation,
• need only Ck

ij for correlators in CFT,
• hard to compute in practice,
• result super�cially depends on OPE sequence (crossing).

Lower Points. Two-point function is OPE onto unity

Fij = 〈OiOj〉 =
∑

k
Ck
ij〈Ok〉 = C1

ij.

Three-point function determines OPE constants

Fijk = 〈OiOjOk〉 =
∑

l
C l
ij〈OkOl〉 =

∑
l
FklC

l
ij.

Lower-point functions restricted by conformal symmetry:

• Two-point function only for related operators.
• No two-point or three-point conformal invariants. Can map triple of point to
any other triple of points.
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• Coordinate dependence of two-point function �xed

Fij ∼
Nij

|ξi − ξj|2∆i
.

Numerator N depends on dimension, spin, level of descendant and operator
normalisation.
• Coordinate dependence of three-point function �xed

Fijk ∼
Nijk

|ξi − ξj|∆ij |ξj − ξk|∆jk |ξk − ξi|∆ki

with scaling weights ∆ij = ∆i +∆j −∆k. Numerators N depend on dimension,
spin, level of descendant and operator normalisation.
• Three-point functions exist for three di�erent operators.

Normalise operators, then CFT data consists of

• scaling dimensions, spins: spectrum,
• coe�cients of three-point function: structure constants.

7.5 Stress-Energy Tensor

The Noether currents for spacetime symmetries are encoded into the conserved
stress-energy tensor Tαβ

Tαβ = − 1

4πκ2

(
(∂αX) · (∂βX)− 1

2
ηαβη

γδ(∂γX) · (∂δX)
)

Object of central importance for CFT/OPE! Trace is exactly zero: Weyl
symmetry. Remaining components TLL and TRR translate to euclidean

T = − 1

κ2
(∂X)2, T̄ = − 1

κ2
(∂̄X̄)2.

Ignore string physical state condition T = T̄ = 0.

Conservation. Current J(z) = ζ(z)T (z) for δz = ζ(z). Classical conservation
∂̄J = 0 by means of e.o.m.. QFT: Conservation replaced by Ward identity:

∂̄J(z)O(w, w̄) = 2π δ2(z − w, z̄ − w̄) δO(w, w̄).

Current J conserved except at operator locations.

OPE: Integrate z over small ball around w

1

2π

∫
|z−w|<ε

d2z . . .

Evaluate integration over z̄ (
∫
d2z∂̄ . . . = −i

∫
dz . . .)

1

2πi

∫
|z−w|=ε

dz J(z)O(w, w̄) = δO(w, w̄).

Similarly for T̄ . Consider only holomorphic part.
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Stress-Energy OPE. Derive OPE of O and T .

First consider translation δz = ε, δO = ε∂O. Need simple pole to generate residue

T (z)O(w, w̄) = . . .+
∂O(w, w̄)

z − w
+ . . .

Further terms with higher poles and polynomials in � . . .�.

Suppose O has holomorphic weight h. Consider scaling δz = εz,
δO = ε(hO + z∂O). Substitute and require following poles in OPE

T (z)O(w, w̄) = . . .+
hO(w, w̄)

(z − w)2
+
∂O(w, w̄)

z − w
+ . . .

Next suppose O is quasi-primary. Consider scaling δz = εz2,
δO = ε(2hzO + z2∂O). Substitute and require absence of cubic pole

T (z)O(w, w̄) = . . .+
0

(z − w)3
+
hO(w, w̄)

(z − w)2
+
∂O(w, w̄)

z − w
+ . . .

Finally suppose O is primary. Leads to absence of higher poles

T (z)O(w, w̄) =
hO(w, w̄)

(z − w)2
+
∂O(w, w̄)

z − w
+ . . .

Note that derivatives shift poles by one order.
Descendants are not (quasi-)primaries.

OPE of stress-energy tensor. Compute explicitly (Wick):

T (z)T (w) =
c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
+ . . .

Result applies to general CFT's. Virasoro algebra!

• T is a local operator,
• T has holomorphic weight h = 2 (classical),
• T is quasi-primary,
• T is not primary (unless c = 0),
• quartic pole carries central charge c = D.

Conformal transformations for T almost primary:

δT = δz ∂T + 2 ∂δz T +
c

12
∂3δz,

T ′(z) =

(
dz′

dz

)2 (
T (z′) +

c

12
S(z′, z)

)
,

S(z′, z) =

(
d3z′

dz3

)(
dz′

dz

)−1

− 3

2

(
d2z′

dz2

)2(
dz′

dz

)−2

Additional term S is Schwarzian derivative. Zero for Möbius transformations.
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