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Definitions: von Neumann entropy

In this series we will derive some useful properties of the von Neumann entropy: the quantum version of Shannon entropy.
We will also look at the strangeness of quantum mutual information. Before we start, here are a few definitions.
The von Neumann entropy of a density operator ρ ∈ S(HA) is defined as

H(A)ρ = −Tr
(
ρ log ρ

)
= −

∑
i

λi log λi, (1)

where {λi}i are the eigenvalues of ρ.
Given a composite system HA ⊗HB ⊗HC we write H(AB)ρ to denote the entropy of the reduced state of a subsystem,
ρAB = TrC(ρABC). When the state ρ is obvious from the context we drop the indices.
The conditional von Neumann entropy is defined as

H(A|B)ρ = H(AB)ρ −H(B)ρ. (2)

In the Alice-and-Bob picture this quantifies the uncertainty that Bob (who holds the B part of the quantum state ρAB)
still has about Alice’s state.
The strong sub-additivity property of the von Neumann entropy is very useful. It applies to a tripartite composite system
HA ⊗HB ⊗HC ,

H(A|BC)ρ ≤ H(A|B)ρ. (3)

Exercise 9.1 Some properties of von Neumann entropy

a) Prove the following general properties of the von Neumann entropy:

1. If ρAB is pure, then H(A)ρ = H(B)ρ.

2. If two systems are independent, ρAB = ρA ⊗ ρB , then H(AB)ρ = H(A)ρA +H(B)ρB .

b) Consider a bipartite state that is classical on subsystem Z: ρZA =
∑
z pz|z〉〈z|Z ⊗ ρzA for some basis {|z〉Z}z of HZ .

Show that:

1. The conditional entropy of the quantum part, A, given the classical information Z is

H(A|Z)ρ =
∑
z

pzH(A|Z = z), (4)

where H(A|Z = z) = H(A)ρzA .

2. The entropy of A is concave,

H(A)ρ ≥
∑
z

pzH(A|Z = z). (5)

3. The entropy of a classical probability distribution {pz}z cannot be negative, even if one has access to extra
quantum information, A,

H(Z|A)ρ ≥ 0. (6)

Remark: Eq (6) holds in general only for classical Z. Bell states are immediate counterexamples in the fully
quantum case.
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Exercise 9.2 Majorisation and entanglement catalysis

a) Warm-up. Let ρ and τ be two single-qubit states characterized by their Bloch vectors,

ρ =
1

2
(1 + ~r · ~σ), τ =

1

2
(1 + ~t · ~σ).

Show that spec (ρ) ≺ spec (τ) if and only if |r| ≤ |t|. Here, spec (ρ) denotes the spectrum of ρ, i.e., the set of
eigenvalues of ρ.

b) We perform a projective measurement described by the POVM {Pi}i on a state ρ. Denote the post-measurement
state (not conditioned on the outcome) by ρ′. Show that spec (ρ′) ≺ spec (ρ).

c) We saw that two parties that share an initial bipartite pure state |ψ〉AB can transform it into another state |φ〉AB
via LOCC if and only if §(ψ) ≺ §(φ) (Theorem 5.3.4). Here, §(ψ) = spec (TrA|ψ〉〈ψ|) is the vector formed by the
eigenvalues of the reduced density matrices on each side.

There are situations where, even if that
condition is not satisfied, having access to
an extra entangled state |τ〉A′B′ (a cata-
lyst) allows the players to transform |ψ〉
into |φ〉 and return the catalyst untouched
in the end.

Alice

Bob

A A’

B B’

ψ τ LOCC

A A’

B B’

φ τ

Consider the following three bipartite states (on a four-level system on each side),

|ψ〉AB =
√

0.4 |00〉+
√

0.4 |11〉+
√

0.1 |22〉+
√

0.1 |33〉, |φ〉 =
√

0.5 |00〉+
√

0.25 |11〉+
√

0.25 |22〉,

|τ〉A′B′ =
√

0.6 |00〉+
√

0.4 |11〉.

Check that §(ψ) ≺ §(φ) does not hold, but §(ψ ⊗ τ) ≺ §(φ⊗ τ) does.

(Note that to compute §(ψ ⊗ τ) you have to trace out A and A′ to obtain the reduced density matrix on Bob’s side
(BB′).)

Exercise 9.3 Information measures bonanza

Take a system A in state ρ. Non-conditional quantum min- and max-entropies are given by

Hmin(A)ρ = − log max
λ∈spec(ρ)

λ, Hmax(A)ρ = log rank(ρ).

For instance, if ρA has eigenvalues spec (ρA) = {0.6, 0.2, 0.2, 0}, we have Hmin(A)ρ = − log 0.6 and Hmax(A)ρ = log 3.
The mutual information measures correlations between two systems. For ρAB , we have

I(A : B)ρ = H(A)ρ +H(B)ρ −H(AB)ρ

= H(A)ρ −H(A|B)ρ.

a) Show that if spec (ρ) ≺ spec (τ), then the entropy of ρ is larger than or equal to the entropy of τ , for the von
Neumann, min- and max-entropies.

b) Consider two qubits A and B in a joint state ρAB .

1. Prove that the mutual information of the Bell state |Ψ+〉 = 1√
2

(|00〉+ |11〉) is maximal for a two-qubit system.

This is why we say that Bell states are maximally entangled.

2. Show that I(A : B) ≤ 1 for classically correlated states, ρAB = p|0〉〈0|A ⊗ σ0
B + (1 − p)|1〉〈1|A ⊗ σ1

B (where
0 ≤ p ≤ 1).

c) Show that if the bipartite state |ψ〉AB can be transformed into |φ〉 via LOCC (without catalysts), then I(A : B)ψ ≥
I(A : B)φ.
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