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Exercise 6.1 Distance bounds

In this exercise we’ll bring together some of the concepts and techniques you have been learning over the past three weeks:
purification, fidelity and trace distance.

The idea here is that we want to create a maximally entangled state |¥) between two systems A and A’. We need this state
to perform a cool quantum task (say for instance teleportation, which we will introduce later in the lecture). However,
we are not sure we can create exactly |¥). We do know that we can create a state in A ® B such that B has almost
no information about A: pap =~ 14/|A| ® pp. How can this help us find an (approximately) maximally entangled state
between A and A’? And what is the probability that something might go wrong with out cool quantum task?

This may look like a contrived setting, but it’s actually quite common that we can find a state like pap (e.g. using
decoupling; stick to Advanced Topics in the next semester to learn more about it!).

a) Given a trace-preserving quantum operation £ and two states p and o, show that
5 (E(0),E(p)) < 6(o, p)-

This means that the probability that any operation (e.g., a measurement) performed on o can be distinguished from
the same operation on p is at most 0(a, p).

b) Show that any purification of the state pap = W]}iiiﬂ ® pp has the form
V) aarBp = |¥)aar @ V) BB,

where |U)q4ar = [Ha| "2 > 1) alt) ar is a maximally entangled state, and |1) pp/ is a purification of pp.

¢) Show that 1 — F(p,0) < d(p,0) < /1 —F(p,0)3.

d) Consider a state o4p that is e-distant from p4p according to the trace distance, i.e.

1
) (UAB, ﬁ ® /JB) <e.

Find an upper bound for

6 (|9)aBp, |¥)aa @ [¥)BB)

where |¢) app is a purification of 0 45. You can take for instance Hp = Ha ® Hp.

Exercise 6.2 Classical channels as trace-preserving completely positive maps.

In this exercise we will see how to represent classsical channels as trace-preserving completely positive maps (TPCPMs).

a) Take the binary symmetric channel p,

Recall that we can represent the probability distributions on both ends of the channel as quantum states in a
given basis: for instance, if Px(0) = ¢q,Px(1) = 1 — ¢, we may express this as the 1l-qubit mixed state px =
q [0)(0[ + (1 = g) [1){1].

What is the quantum state py that represents the final probability distribution Py in the computational basis?



b)

Now we want to represent the channel as a map

Ep : S(Hx) — S(Hy)
pPX — py-

An operator-sum representation (also called the Kraus-operator representation) of a CPTP map € : S(Hx) — S(Hy)
is a decomposition {E}}, of operators £, € Hom(Hx,Hy), > E,E," =1, such that

E(px) = ExpxEy'.
k

Find an operator-sum representation of &p.

Hint: think of each operator Ej, = E,, as the representation of the branch that maps input = to output y.

Now we have a representation of the classical channel in terms of the evolution of a quantum state. What happens
if the initial state px is not diagonal in the computational basis?

Now consider an arbitrary classical channel p from an n-bit space X to an m-bit space Y, defined by the conditional

probabilities { Py|x—z(y) }xy :

Express p as a map &p : S(Hx) — S(Hy) in the operator-sum representation.

Exercise 6.3 TPCPMs as channels

Now we will go the other way around: we are given a TPCPM and will find a way of expressing it as a channel, and
compute its capacity.

Consider two single-qubit Hilbert spaces H 4 and Hp and a TPCPM

a)

d)
€)

£, S(Hx) — S(Hy)

1
p—=pg+A=pp.

Find an operator-sum representation for &,.
Hint: Remember that p € S(H4) can be written in the Bloch sphere representation:

1

2(]14'7?5:)7 F€R37 |ﬂ §17 F'E:T$O$+Tyay+r20z’ (1)

p

where 0, 0, and o, are Pauli matrices. It may be useful to show that
1
1= 5(p + 0,p05 + oypoy + 0.p02).

What happens to the Bloch radius 7 of the initial state when we apply £,7 How can this be interpreted?

Now we will see what happens when we use this quantum channel to send classical information. We start with
an arbitrary input probability distribution Px(0) = ¢, Px(1) = 1 — ¢q. We encode this distribution in a state
px =¢q |0)(0] + (1 —¢q)|1)(1]. Now we send px over the quantum channel, i.e., we let it evolve under &,. Finally, we
measure the output state, py = Ep(px) in the computational basis.

Compute the conditional probabilities { Py|x—(y)}

Maximise the mutual information over ¢ to find the classical channel capacity of the depolarizing channel.

What happens to the channel capacity if we measure the final state in a different basis?



