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Some types of resources

N perfect quantum channel
(Alice sends n qubits to Bob)

_n> perfect classical channel
(Alice sends n bits to Bob)

n
—~ noisy classical channel

~ shared entanglement, or ebits Bob
(Alice and Bob share n Bell pairs)

"n shared bits J




Resource inequalities

Definition: X > Y means “we can obtain Y using X”.
Formally, there exists a protocol to simulate resources Y using only resources
X and local operations.

Examples

1 VoV
~y > 1 (entanglement distribution)
@ Alice prepares an entangled pair, %1—1), locally.
@ She sends one of the qubits to Bob through the quantum channel.

n n I(A:B
-+ > (—>),inthelimitn—>oo.

@ Channel coding for iid channels (p. 21 of the script).




Superdense coding
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Protocol:

Goal:
> = Alice wants to send two classical bits, / and j, to Bob.
They share one Bell state. She can also send him one qubit.

1. Alice applies a local unitary operation, o/, on her half of the entangled

state.

Here, o/ are the Pauli matrices: 0% = 1,0%" = ¢*, etc.
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The states |+//) form a basis for two qubits: the Bell basis.



Superdense coding

2. Alice sends her qubit to Bob.

3. Bob measures the two qubits in the Bell basis.
Outcome of his measurement: /. j.
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Teleportation

2 Goal:

— > «L Alice wants to communicate the state of one qubit, S, to Bob.
A They share one Bell state. She can also send him two

1 classical bits.

Consider that S is in a pure state, |¢) = «|0) + 8|1). (general case inex. 11.1)
Global state: |¢)s ® [¢) ap.

Protocol:
1. Alice measures S and A (her half of the entangled state) in the Bell basis.

Alice’s outcome  Global projector Resulting global state
00: [P sa [0 (WPsa®1p [¢0)sa @ (a]0) + B[1))s

01: [¥Msa [ (W sa®1p [¥%")sa ® (a]0) — B[1))s
10: [0"%sn W W0sa® 1 [0 sa® (B]0) +1))s

11 [pMsa "MW Msa®ls  [')sa® (8]0) — al1))s



Teleportation

2. Alice sends the classical bits that describe her outcome, i, j, to Bob.

3. Bob applies o on his qubit.
Resulting state: |¢).
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Teleportation preserves entanglement between p and the rest of the universe.



More RI: teleportation and entanglement

Suppose that Alice can send unlimited classical communication to Bob.
How much entanglement do they need in order to transmit one qubit?

00
— m
> ~~> Canwehavem>n?
0
n
No! Proof:
We are going to define a monotone, E, such that:
O E(y)=n
0 £(%)-m

@ E can only decrease under the operations allowed by this RI:
arbitrary classical communication and local operations.

This will give us E (~"1>> <E ('\,fr> orm<n.



More RI: teleportation and entanglement

Squashed entanglement

E(A:B) = %mFi(n I(A: B|R) }

Before: A - B
pas: n maximally entangled pairs of qubits = pure state = pasr = pas ® pr

I(A:B|[R)=1I(A:B)=2nYR = E(A:B)=n
After: A % B
m AN
~~ > M Alice prepares m ebits and sends half of each to Bob.

E(A:B)=m



More RI: teleportation and entanglement

2E(A: B)=ming [(A: BIR) |

E(A: B) can only decrease under:

Local operations
Because /(A : B|R) cannot increase under local operations.

Classical communication
Alice will send classical system C to Bob (e.g. a bit string).
We want to compare E(AC : B) and E(A: BC).

JR:2E(AC: B) = I(B: AC|R) (the same as [(AC: BIR))
= H(B|R) — H(B|ACR)
> H(B|RC) — H(B|ARC) (strong subadditivity)
= I(B: AIRC)
=I(BC: AIRC) FRC — H
> n;{i,n I(BC : AIR") =2E(A: BC)



More RI: teleportation and classical communication

Suppose that Alice and Bob share unlimited entanglement.
Can Alice send Bob n qubits by sending him less than 2n classical bits?

Canwe have m< 2n?

No! Proof:
Concatenate teleportation and superdense coding
(with unlimited entanglement).
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More RI: teleportation and classical communication
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Assume that for : >
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weneed m>m'. (ex. 11.3)
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From superdense coding we know that we can have =~ >
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Therefore we have * > > ,andm>m =2n.
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More RI: “hyperdense coding”?

Suppose that Alice and Bob share unlimited entanglement.
Is it possible to send more than two bits, by sending only one qubit?

Can we have m > 2n?
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No! Proof:
Concatenate superdense coding and teleportation
(with unlimited entanglement).
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More RI: “hyperdense coding”?
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n
We just have to show that in order to have :Z >

o

we need n> n'.

Again, we are going to define a monotone. Consider the following setting:
Charlie

Y 1. Alice shares oo e-bits with Bob and oo e-bits
; with a third player, Charlie.
1 . 2. Alice has an n-qubit quantum channel to Bob.
. n 3. Other than these resources, only local
Alice = Bob operations are allowed.
o o 4. The goal is to maximize Al(B : C), the
o 0 difference between initial and final mutual

o : . information between Bob and Charlie.



More RI: “hyperdense coding”?

Why this example?
Because it simulates a quantum channel from Charlie to Bob:
Al(B: C)=2n.

In general, Bob starts with system By, receives a quantum system Q from
Alice (of at most n qubits) and then applies a local TPCPM, so that
Br = £(ByQ) (sorry for the abuse of notation).

We have

I(BF : C) = 1(£(BoQ) : C)
<I(ByQ:C) (strong subadditivity)
=1(By: C)+1(Q: C|B) (chain rule; check for yourself)
<I(By:C)+2n (becauselog, |Q| < n)
Al(B:C)<2n
2n’ < 2n.
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