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Some types of resources

Alice

n
 perfect quantum channel

(Alice sends n qubits to Bob)

n→ perfect classical channel
(Alice sends n bits to Bob)

n9 noisy classical channel

g

n shared entanglement, or ebits
(Alice and Bob share n Bell pairs)

f

n shared bits

Bob



Resource inequalities

Definition: X ≥ Y means “we can obtain Y using X ”.
Formally, there exists a protocol to simulate resources Y using only resources
X and local operations.

Examples

1
 ≥

g

1 (entanglement distribution)

Alice prepares an entangled pair, |00〉+|11〉√
2

, locally.

She sends one of the qubits to Bob through the quantum channel.

n9 ≥ n I(A:B)→ , in the limit n→∞.

Channel coding for iid channels (p. 21 of the script).



Superdense coding

1
 
g

1
≥ 2→

Goal:
Alice wants to send two classical bits, i and j , to Bob.
They share one Bell state. She can also send him one qubit.

Protocol:
1. Alice applies a local unitary operation, σij , on her half of the entangled

state.
Here, σij are the Pauli matrices: σ00 = 1, σ01 = σx , etc.

i , j Global operation Resulting state

00 1A ⊗ 1B
|00〉+|11〉√

2
|00〉+|11〉√

2
=: |ψ00〉

01 σx
A ⊗ 1B

|00〉+|11〉√
2

|00〉−|11〉√
2

=: |ψ01〉

10 σy
A ⊗ 1B

|00〉+|11〉√
2

|01〉+|10〉√
2

=: |ψ10〉

11 σz
A ⊗ 1B

|00〉+|11〉√
2

|01〉−|10〉√
2

=: |ψ11〉

The states |ψij〉 form a basis for two qubits: the Bell basis.



Superdense coding

2. Alice sends her qubit to Bob.
3. Bob measures the two qubits in the Bell basis.

Outcome of his measurement: i , j .

ψ00

σ ij

i,j

Bell

unitary operation

measurement
ψij

i,j

Bob

Alice



Teleportation
2→
g

1
≥ 1
 

Goal:
Alice wants to communicate the state of one qubit, S, to Bob.
They share one Bell state. She can also send him two
classical bits.

Consider that S is in a pure state, |φ〉 = α|0〉+ β|1〉. (general case in ex. 11.1)
Global state: |φ〉S ⊗ |ψ00〉AB.

Protocol:
1. Alice measures S and A (her half of the entangled state) in the Bell basis.

Alice’s outcome Global projector Resulting global state

00 : |ψ00〉SA |ψ00〉〈ψ00|SA ⊗ 1B |ψ00〉SA ⊗ (α|0〉+ β|1〉)B

01 : |ψ01〉SA |ψ01〉〈ψ01|SA ⊗ 1B |ψ01〉SA ⊗ (α|0〉 − β|1〉)B

10 : |ψ10〉SA |ψ10〉〈ψ10|SA ⊗ 1B |ψ10〉SA ⊗ (β|0〉+ α|1〉)B

11 : |ψ11〉SA |ψ11〉〈ψ11|SA ⊗ 1B |ψ11〉SA ⊗ (β|0〉 − α|1〉)B



Teleportation

2. Alice sends the classical bits that describe her outcome, i , j , to Bob.
3. Bob applies σij on his qubit.

Resulting state: |φ〉.

ψ00

i,j

ψij

Bob

Alice

ρ
Bell

σ ij
ρ

Teleportation preserves entanglement between ρ and the rest of the universe.



More RI: teleportation and entanglement

Suppose that Alice can send unlimited classical communication to Bob.
How much entanglement do they need in order to transmit one qubit?

∞→
g

n
≥ m
 Can we have m > n ?

No! Proof:
We are going to define a monotone, E , such that:

1 E
(
g

n

)
= n;

2 E
(

m
 
)

= m;

3 E can only decrease under the operations allowed by this RI:
arbitrary classical communication and local operations.

This will give us E
(

m
 
)
≤ E

(
g

n

)
, or m ≤ n.



More RI: teleportation and entanglement

Squashed entanglement

E(A : B) :=
1
2

min
R

I(A : B|R)

Before: Ag
n

B
ρAB: n maximally entangled pairs of qubits⇒ pure state⇒ ρABR = ρAB ⊗ ρR

I(A : B|R) = I(A : B) = 2n,∀R ⇒ E(A : B) = n

After: A m
 B

m
 ≥

g

m Alice prepares m ebits and sends half of each to Bob.

E(A : B) = m



More RI: teleportation and entanglement

2E(A : B) = minR I(A : B|R)

E(A : B) can only decrease under:

Local operations
Because I(A : B|R) cannot increase under local operations.

Classical communication
Alice will send classical system C to Bob (e.g. a bit string).
We want to compare E(AC : B) and E(A : BC).

∃R : 2E(AC : B) = I(B : AC|R) (the same as I(AC : B|R) )

= H(B|R)− H(B|ACR)

≥ H(B|RC)− H(B|ARC) (strong subadditivity)
= I(B : A|RC)

= I(BC : A|RC) RC =: R′

≥ min
R′

I(BC : A|R′) = 2E(A : BC)



More RI: teleportation and classical communication
Suppose that Alice and Bob share unlimited entanglement.
Can Alice send Bob n qubits by sending him less than 2n classical bits?

m→
g

∞
≥

n
 
g

∞
Can we have m < 2n ?

No! Proof:
Concatenate teleportation and superdense coding
(with unlimited entanglement).

m→
g

∞
≥

n
 
g

∞

n′
 
g

∞
≥

m′→
g

∞

Fix n = n′:

m→
g

∞
≥

n
 
g

∞
≥

m′→
g

∞



More RI: teleportation and classical communication

m→
g

∞
≥

n
 
g

∞
≥

m′→
g

∞

Assume that for
m→
g

∞
≥

m′→
g

∞
we need m ≥ m′. (ex. 11.3)

From superdense coding we know that we can have
n
 
g

∞
≥

2n→
g

∞
.

Therefore we have
m→
g

∞
≥

n
 
g

∞
≥

2n→
g

∞
, and m ≥ m′ = 2n.



More RI: “hyperdense coding”?
Suppose that Alice and Bob share unlimited entanglement.
Is it possible to send more than two bits, by sending only one qubit?

n
 
g

∞
≥

m→
g

∞
Can we have m > 2n ?

No! Proof:
Concatenate superdense coding and teleportation
(with unlimited entanglement).

n
 
g

∞
≥

m→
g

∞

2n′→
g

∞
≥

n′
 
g

∞

Fix m = 2n′:

n
 
g

∞
≥

2n′→
g

∞
≥

n′
 
g

∞



More RI: “hyperdense coding”?

n
 
g

∞
≥

2n′→
g

∞
≥

n′
 
g

∞

We just have to show that in order to have
n
 
g

∞
≥

n′
 
g

∞
we need n ≥ n′.

Again, we are going to define a monotone. Consider the following setting:

BobAlice

Charlie

...8

n

8

1. Alice shares∞ e-bits with Bob and∞ e-bits
with a third player, Charlie.

2. Alice has an n-qubit quantum channel to Bob.
3. Other than these resources, only local

operations are allowed.
4. The goal is to maximize ∆I(B : C), the

difference between initial and final mutual
information between Bob and Charlie.



More RI: “hyperdense coding”?

Why this example?
Because it simulates a quantum channel from Charlie to Bob:
∆I(B : C) = 2n′.

In general, Bob starts with system B0, receives a quantum system Q from
Alice (of at most n qubits) and then applies a local TPCPM, so that
BF = E(B0Q) (sorry for the abuse of notation).

We have

I(BF : C) = I(E(B0Q) : C)

≤ I(B0Q : C) (strong subadditivity)
= I(B0 : C) + I(Q : C|B0) (chain rule; check for yourself)
≤ I(B0 : C) + 2n (because log2 |Q| ≤ n)

∆I(B : C) ≤ 2n
2n′ ≤ 2n.
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