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I. INTRODUCTION

In this course we will examine in detail one of the most fascinating departures from classical

theory exhibited by our world, so-called non-locality, and connect it to a practical application:

device-independent cryptography.

Quantum mechanics is a probabilistic theory: it does not assign precise values to experimental

outcomes, but instead prescribes the distribution over the outcomes, even with the most complete

description of the state within the theory. For example, when a particle in the state 1√
2
(|0〉 +

|1〉) is measured in the {|0〉, |1〉} basis, according to quantum theory each outcome occurs with

probability 1
2 . (Note that, since the state is pure, this is the most complete description we can

have about it.)

This is already a stark departure from classical theory which is fundamentally deterministic: any

uncertainty we may have about the outcomes of future events is purely due to a lack of knowledge

about the initial configuration.

This inherent randomness was widely discussed in the early days of quantum mechanics, and

led Einstein, Podolsky and Rosen [1] to question the completeness of the theory. They considered

a measurement on one half of a maximally entangled pair whose outcome (according to the theory)

allows perfect prediction of the outcome of the analogous measurement on the other half (the

outcomes are always anti-correlated). Furthermore, this conclusion holds no matter how far apart

the two particles are.

A natural way to explain such correlations, is to imagine that the quantum state is not the

most complete description of the system, but that, in fact, some additional shared randomness

was given to the particles by the source (this type of additional information is often termed local

hidden variable, see later). The anti-correlated outcomes can then be alternatively explained using

this shared randomness.
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II. NON-LOCALITY

As argued above, perfectly anti-correlated outcomes do not present any mystery. If sleeping

beauty awakes one day and sees daylight, she immediately knows it is night on the opposite side

of the planet, and there is nothing surprising about that. However, quantum theory does contain

mysterious correlations, unexplainable in such a classical way. Such correlations are said to be

non-local and are important in the context of Bell’s theorem.

A. Example

Before discussing in more detail, here is an example which neatly shows the power of quantum

correlations, in the form of a game between three co-operating players and a referee. The three

players are going to play the following game. They will be isolated from one another and each will

be asked one of two questions by the referee (the first party’s question is denoted A ∈ {0, 1}, the

second party’s B ∈ {0, 1} and the third party’s C ∈ {0, 1}) to which they must answer either +1

or −1. The set of questions is picked uniformly from (A,B,C) = (0, 0, 0), (0, 1, 1), (1, 0, 1), and

(1, 1, 0). If the set (0, 0, 0) is asked, they win the game if the product of their outputs is −1, while

for each of the remaining sets of questions, they win the game if the product of their outcomes is

+1. The three players know the form of the game and are allowed to meet beforehand to discuss

their strategy. However, no communication is allowed once they are isolated at the start of the

game.

Let’s think about ways to win this game. Imagine that, at the start of the game, the players

agree on two values each, one of which is output if they receive input 0, and the other is output

if they receive input 1 (let us denote these values x0, x1 for the first player y0, y1 for the second

and z0, z1 for the third, so that x0 ∈ ±1 is the output made by the first player if asked question

A = 0). We call such a strategy an assignment strategy. One possible choice is for all of the values

x0, x1, y0, . . ., z1 to be +1. This strategy wins the game with probability 3
4 , since the product of

the outputs is +1, which wins the game unless (A,B,C) = (0, 0, 0).

So if we play the game once and the players win, we shouldn’t be very surprised. But what if

we play the game 100 times and the players always win? Using the above strategy, the probability

of this is (3
4)100 ∼ 10−13, but is there a better strategy?

It turns out that no assignment strategy can always win the game. To see this note that the

requirements on the values are that x0y0z0 = −1, x0y1z1 = 1, x1y0z1 = 1 and x1y1z0 = 1. The
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product of the left-hand-sides is (x0x1y0y1z0z1)2, while the product of the right-hand-sides in −1,

a contradiction. In fact, the best assignment strategy has success probability 3
4 .

However, we can always win the game using a quantum strategy! If the three players share a

GHZ state [2], 1√
2
(|000〉 − |111〉) and each player on receiving 0 measures the observable σx and

on receiving 1 measures the observable σy, giving the measurement outcome as their output, then

they always win the game (Exercise: check this). The resulting correlations are called the GHZ

correlations, and the above game is called the GHZ pseudo-telepathy game (the reason for calling

it pseudo-telepathy is that the ability to always win the game cannot be explained from a classical

point-of-view, and hence might appear telepathic).

That no assignment strategy works is the idea behind the potential power of GHZ (or indeed

other) correlations in cryptography. One reverses the role of the game, replacing the referee with

an adversary who is asked to send states to Alice, Bob and Charlie which together always win the

GHZ game. The idea is that in order to do so, the adversary cannot use an assignment strategy,

and hence has limited information about the outcomes. We will come back to this point later.

B. Bell Locality

In this section, we will consider arbitrary bipartite correlations (the definitions can be readily

generalized to more parties). Consider two spacelike separated particles and performing a measure-

ment on each. We denote the choice of measurement using A and B, and the respective outcomes

X and Y . The distribution of outcomes given the measurement choices is denoted PXY |AB. For

the moment, we can forget quantum theory, and think of this setup in an arbitrary theory. All the

distributions we will consider will be non-signalling, i.e. they satisfy PX|AB = PX|A (the setting B

does not affect the distribution of X given A) and PY |AB = PY |B. (Note that quantum correlations,

in spite of their apparent pseudo-telepathic properties mentioned above, do not allow signalling.)

In a local hidden variable theory, one attempts to explain such correlations in terms of an

additional parameter, Λ, which one can intuitively think of as being attached to the particles by

the source. One then considers the distribution PXY |ABΛ such that the original correlations are

recovered after averaging over Λ, i.e.1

PXY |AB =
∑
λ

PΛ|AB(λ)PXY |ABλ (1)

1 A note on notation. I will use upper case to denote random variables and lower case to denote particular instances
of such variables. To connect with another common notation, PΛ|AB(λ) is often written P (Λ = λ|A,B).
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(this equation holds by definition of conditional probability distributions).

The first assumption that we will use is that the measurement settings can be chosen freely.

This means that they are independent of all variables outside their future lightcone. In other words,

we say that A is free if PA|Γ = PA, where Γ is the collection of all variables outside the future

lightcone of A.

In the present case, that the settings A and B can be chosen freely allows us to write PΛ|AB = PΛ,

so that (1) becomes

PXY |AB =
∑
λ

PΛ(λ)PXY |ABλ. (2)

We also consider the case that the outcomes X and Y are completely determined from the settings

and the hidden variables, so that PXY |ABλ = PX|AλPY |Bλ, with PX|aλ(x) ∈ {0, 1} and PY |bλ(y) ∈

{0, 1}.

This coincides with Bell’s definition of locality (see e.g. [3]). In other words, we say that a set

of correlations PXY |AB admits a local hidden variable description (with local hidden variable Λ) if

it can be expressed in the form

PXY |AB =
∑
λ

PΛ(λ)PX|AλPY |Bλ, (3)

with PX|aλ(x) ∈ {0, 1} and PY |bλ(y) ∈ {0, 1}. Correlations which cannot be expressed in this way

are said to be non-local.

Remark: there exist stronger results that do not rely on X and Y being completely determined

from the settings and the hidden variables [4].

C. Bell’s theorem

We consider again the bipartite setting above and imagine that on each particle one of two

measurements is made, i.e. A ∈ {0, 2} and B ∈ {1, 3}, giving one of two outcomes X,Y ∈ {0, 1}.

We then characterize the quantum correlations in terms of the following quantity (the reason for

calling this I2 will become clear later)

I2 = P (X = Y |0, 3) + P (X 6= Y |0, 1) + P (X 6= Y |2, 1) + P (X 6= Y |2, 3).

Bell’s theorem (this is a actually a rewriting of the CHSH version of the theorem) then states

that if PXY |AB admits a local hidden variable description (i.e. can be written in the form of (3)),

then I2 ≥ 1. Interestingly, there are correlations which do not obey this inequality.
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The proof of Bell’s theorem will be worked out in the exercises, where we also examine a set of

quantum correlations that do not satisfy I2 ≥ 1.

D. Other Bell inequalities

We will use the term Bell inequality to refer to any (non-trivial) constraint on the outcome

probabilities satisfied by correlations which admit a local hidden variable description. (The trivial

constraints are those such as that the probabilities are non-negative and sum to 1.)

We have seen another example already, in the form of the three-party game discussed in Sec-

tion II A. We will discuss a further family of inequalities here, called chained Bell inequalities [5, 6],

which we will come back to later on in a cryptographic context.

These are an extension of the CHSH inequality discussed above, where we allow N measurement

choices for each of the two parties (we denote these A ∈ {0, 2, . . . 2N−2} and B ∈ {1, 3, . . . 2N−1}).

We define

IN = P (X = Y |0, 2N − 1) +
∑
a,b

|a−b|=1

P (X 6= Y |a, b). (4)

For any N ≥ 2, IN ≥ 1 in a Bell inequality. It turns out that there exist quantum correlations

satisfying IN = 2N sin2 π
4N , which tends to 0 for large N . We will come back to this family of Bell

inequalities later.

E. More general non-local correlations

So far we have discussed correlations that admit a local hidden variable description and seen

that there exist quantum correlations that are more general. In fact we can consider correlations

which are more general still. Like in the previous section, most of what is said here could be

generalized to more parties, but we focus on the bipartite case for simplicity.

One might ask, why study these? There are several reasons. For one, they shed light on

quantum theory itself: one can examine why quantum theory has the correlations it does by

studying theories with more general correlations and showing they are “paradoxical” in some

way (I use paradoxical in quotes because such paradoxes can be subjective). In addition, as we

will see there are sets of post-quantum correlations which are easier to characterize, and hence

allowing post-quantum correlations can make security proofs simpler. Another reason is simply

that these allow stronger security proofs, and ones that will stand even if quantum theory is one day
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superseded. There is an additional subtle point regarding security proofs. Most are constructed

under the implicit assumption that quantum theory is the most complete description of the world.

However, the theory was developed to explain a set of observed phenomena, and does not contain

any guarantee of completeness (hence the work of EPR, Bell, Kochen-Specker etc.) Fortunately,

recent results have shown that it cannot be extended in a way which provides more information

about experimental outcomes [4].

Let us denote the number of choices of measurement A by |A| and the number of choices of

outcome X by |X|, etc. For simplicity, we will take |A| = |B| and |X| = |Y |, and hence define

certain sets of distribution, e.g. P(2,|A|,|X|), where 2 denotes the bipartite case2. This is the set

of all “bipartite”3 probability distributions with |A| measurement settings for each party and |X|

outcomes for each (this is straightforwardly generalized), i.e.

P(2,|A|,|X|) = {PXY |AB : PXY |ab(x, y) ≥ 0 ∀ a, b, x, y,
∑
xy

PXY |ab(x, y) = 1 ∀ a, b}.

We then define the set of non-signalling distributions, denoted P(2,|A|,|X|)
NS :

P(2,|A|,|X|)
NS = {PXY |AB ∈ P(2,|A|,|X|) : PX|AB = PX|A, PY |AB = PY |B}.

Quantum correlations form a subset of P(2,|A|,|X|)
NS which we denote P(2,|A|,|X|)

QM . These correlations

are those for which there exists a bipartite quantum state (positive semi-definite operator with

trace 1) ρ and sets of POVMs, {Eax} and {F by} (i.e. positive semi-definite operators with
∑

xE
a
x = 11

for all a, and
∑

y F
b
y = 11 for all b) such that PXY |ab(x, y) = tr((Eax ⊗ F by )ρ).

These sets are distinct. One example of a non-signalling distribution that is not quantum

is the set of correlations for which I2 = 0 with PX|a(0) = PY |b(0) = 1
2 for all a and b. This

set of correlations is often called a non-local box. It is extremal amongst the set of non-signalling

distributions (i.e. it cannot be decomposed as a convex mixture of other non-signalling correlations).

This distribution will be discussed further in the exercises, where we will prove that it is not in

P(2,|A|,|X|)
QM .

The third set we consider is the set that admits a local hidden variable description, which I

here call P(2,|A|,|X|)
LHV . As is shown in Exercise 1, this set is distinct from the quantum set, so that

P(2,|A|,|X|)
LHV ⊂ P(2,|A|,|X|)

QM ⊂ P(2,|A|,|X|)
NS . Note also that each of the sets P(2,|A|,|X|)

NS , P(2,|A|,|X|)
QM and

P(2,|A|,|X|)
LHV is convex.

2 More generally P(n,|A|,|B|,...,|X|,|Y |,...) is the set of n-party distributions with the stated number of settings and
outcomes for each party.

3 I use bipartite in quotes here, since the concept of subsystems breaks down if the correlations are signalling (which
is allowed within this set).
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These distributions can be represented as vectors in a vector space. In the bipartite case where

each system has 2 inputs and 2 outputs, i.e. |A| = |X| = 2, there are 16 probabilities PXY |AB, but

because of the non-signalling conditions and normalization, the set of distributions is 8-Dimensional

(Exercise: show this). These sets can be characterized by their extreme points (any member of

each set is a convex combination of the extreme points of that set). The sets P(2,2,2)
NS and P(2,2,2)

LHV

form polytopes within the 8-Dimensional space (i.e., these sets have a finite number of extremal

points, the vertices of the polytope). Bell inequalities, such as I2 ≥ 1 correspond to faces of P(2,2,2)
LHV .

The set P(2,2,2)
QM does not form a polytope. For a review of these properties, see [7].

The boundaries of these three sets all come together at local deterministic points (points where

PX|a ∈ {0, 1} and PY |b ∈ {0, 1} for all a and b), which form the set of extreme points of P(n,|A|,|X|)
LHV ,

but there can also be points where quantum correlations exist on the boundary of P(n,|A|,|X|)
NS , but

not on the boundary of P(n,|A|,|X|)
LHV , for example, GHZ correlations discussed in Section II A. (Note

that the probability of winning the game with GHZ correlations is 1, which is equal to maximum

possible probability of winning the game, and therefore to the best non-signalling strategy.)

F. Tests for quantum correlations

It is reasonably straightforward to test whether or not a given set of correlations, PXY |AB, is

in P(2,|A|,|X|)
NS or P(2,|A|,|X|)

LHV (again, for notational simplicity, I’ll take |A| = |B| and |X| = |Y |).

However, deciding whether or not a given set of correlations is quantum is less straightforward, in

spite of the simple definition. One reason for this is that the quantum set is not a polytope, so

cannot be characterized in terms of a finite number of linear inequalities.

One way to certify that a set of correlations PXY |AB is quantum is to search for sets of positive

semi-definite operators {Eax}, {F by} and ρ such that
∑

xE
a
x = 11 for all a, and

∑
y F

b
y = 11 for all

b, trρ = 1, and PXY |ab(x, y) = tr((Eax ⊗ F by )ρ). However, any computational search is restricted in

the maximum dimension of the spaces HA and HB. So, although finding that such a set exists in

some finite dimensions certifies that the correlations are in P(2,|A|,|X|)
QM , not finding any such set is

not, in general, sufficient to establish that the correlations are not quantum.

Conversely, there is a technique which provides a certificate that a distribution is not in

P(2,|A|,|X|)
QM . This is achieved through a set of necessary conditions for quantum correlations [8].

Suppose a set of correlations PXY |AB is in P(2,|A|,|X|)
QM . We define the set {A1, A2, . . .} =

{11 ⊗ 11} ∪ {Eax ⊗ 11}a,x ∪ {11 ⊗ F by}b,y, and construct the matrix M for which Mi,j = tr(A†iAjρ).

(Note that this matrix contains elements defined by the product of operators on the same system,
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e.g. tr((E0
0E

2
1 ⊗ 11)ρ).) This matrix is always positive semi-definite, since4

〈v|M |v〉 =
∑
i,j

tr(v†iA
†
iAjvjρ) = tr((

∑
i

Aivi)
†(
∑
i

Aivi)ρ) ≥ 0,

where the last inequality follows because the trace of the product of two positive semi-definite

operators cannot be negative.

Now imagine we are given a set of correlations PXY |AB, and want to establish whether they are

in P(2,|A|,|X|)
QM . We can imagine a partial construction of M , where we fill in any entries we can,

e.g. tr((E0
0 ⊗ F 1

0 )ρ) = PXY |01(0, 0), or tr((E0
0 ⊗ 11)ρ) = PX|0(0) etc. Note that some entries cannot

be filled in directly, such as that corresponding to tr((E0
0E

2
1 ⊗ 11)ρ), which is not an element of

PXY |AB, and is not a measurable quantity. Having filled in as many entries as possible, we ask:

does there exist a completion of the matrix such that it is positive semi-definite? If there does not,

then we know that the distribution is not in P(2,|A|,|X|)
QM . However, if there does, then the problem

is undecided (the condition that M is positive semi-definite is necessary for the distribution to be

in P(2,|A|,|X|)
QM , but not sufficient).

There is another characterization of the set of quantum correlations, P(2,|A|,|X|)
QM that is often

more suited to this purpose. One can equivalently define the set P(2,|A|,|X|)
QM as the set of distributions

for which there exists a pure state |Ψ〉 and orthogonal projective measurements, {Eax} and {F by}

(for {Eax}, this means EaxE
a
x′ = Eaxδx,x′ and

∑
xE

a
x = 11 for all a) such that PXY |ab(x, y) =

〈Ψ|Eax ⊗ F by |Ψ〉. This follows because any mixed state can be purified on a larger system, and any

POVM can be viewed as a projective measurement on a larger system (this is proven in [9]). Thus,

since we have not set any limit on the size of the space required to realize these correlations, this is

an equivalent description. This characterization allows us to fill in the entry of M corresponding

to 〈Ψ|Ea0Ea1 ⊗ 11|Ψ〉 as 0, for example.

In addition, this technique can be used for other sets of operators (instead of {Eax ⊗ 11} etc.),

and an example is given in the exercises.

As mentioned above, if M can be completed in a positive semi-definite way, it does not imply

that the distribution is quantum. However, the set {Ai} can be extended to including other

operators, building a hierarchy of conditions to test for quantum correlations. These are beyond

4 Recall that an operator A is positive semi-definite if for all vectors v, 〈v|A|v〉 ≥ 0. Equivalently, A is positive
semi-definite if all its eigenvalues are greater than or equal to 0.
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the scope of this module. Further details can be found in [10].
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