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Handy properties of von Neumann entropy

1. Definition: H(A)ρ = −Tr
(
ρ log ρ

)
= −

∑
i λi log λi, where:

(a) {λi}i are the eigenvalues of ρ;

(b) the logarithm is log2;

(c) to evaluate the entropies, 0 log 0 = 0;

(d) nonation: we sometimes see just H(A) or even H(ρ).

2. Positivity: H(A)ρ ≥ 0 (because 0 ≤ λi ≤ 1).

3. Entropy of pure states: H(A)|ψ〉 = 0 (because the density matrix has a single eigenvalue 1 for eigenvector
|ψ〉).

4. Basis independence: H(A)ρ = H(A)UρU† for unitaries U , because the eigenvalues are not affected by a
change of basis.

5. Conditional entropy: H(A|B)ρ = H(AB)ρ −H(B)ρ.

6. Strong subadditivity: H(A|BC)ρ ≤ H(A|B)ρ. In other words, knowing more cannot hurt.

Exercise 9.1 Some properties of von Neumann entropy

In this exercise you have to prove some more properties of von Neumann entropy. The first one is rather
surprising: if two systems share a pure state, then the entropy of each of the systems is the same, inde-
pendently of their dimensions. In other words, if you have a pure state |ψ〉 in a system represented by the
hilbert space H, then you can decompose the system in two parts, H = HA⊗HB, in any way you want and
the entropy of A will always be equal to the entropy of B, even if you choose to split H in a way such that
|HA| � |HB|.
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Figure 1: If ρAB is pure H(A)ρ = H(B)ρ, independently of dimensions of subsystems A and B.

To prove this, try writting a Schmidt decomposition of |ψ〉 (page 27 of the script).
The next property studies two systems that are in a product state, ρAB = ρA ⊗ ρB. The systems are
independent of each other—whatever operations or measurements you perform on A will not affect ρB and
vice-versa. In this non-correlated case one would expect that the uncertainty about the global state is just
the sum of the uncertainty about the two local subsystems—and, for once, quantum mechanics respects
common sense, with H(AB) = H(A) +H(B).
To prove that property, you may start by expanding the reduced states in their eigenbases,

ρA =
∑
k

γk|k〉〈k|A, ρB =
∑
`

λ`|`〉〈`|B.

Now expand the composed state ρAB = ρA ⊗ ρB in those bases and compute its entropy directly.
In part b) we look at a special category of bipartite states, those that are classical on one of the subsystems.
These states are introduced on pages 34–35 of the script. They have the form

ρZA =
∑
z

pz|z〉〈z|Z ⊗ ρzA (1)
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for a fixed basis {zZ}z of the first subsystem HZ and a probability distribution {pz}z.
It help to look at one example of such a state. Consider two qubits, the computational basis and the
classicaly correlated state

ρZA = p |0〉〈0| ⊗
(
α β
γ δ

)
+ (1− p) |1〉〈1| ⊗

(
α′ β′

γ′ δ′

)
Actually, the first system can be a classical bit, since no cross terms like |0〉〈1| appear there. The reduced
state of system A is just

ρA = TrZ(ρZA) = p

(
α β
γ δ

)
+ (1− p)

(
α′ β′

γ′ δ′

)
,

and in general, for a hybrid classical-quantum state of the form of Eq. 1,

ρA =
∑
z

pz ρ
z
A.

The reduced state of the classical system is

ρZ = TrA(ρZA) = p(α+ δ) |0〉〈0|+ (1− p)(α′ + δ′) |1〉〈1|,

or, in general,

ρz =
∑
z

pzTr(ρzA) |z〉〈z|.

These hybrid states may be interpreted as “state ρzA was prepared on system A with probability pz, and
in that case the classical register Z shows the value z, i.e., it is in the pure state |z〉.” A measurement on
system Z performed in basis {z}z would allow us to determine which ρzA had been prepared, because the
total state would became |z〉〈z| ⊗ ρzA. Since in that case the reduced state of A would be ρzA, we call that
“the state of system A conditioned on the measurement outcome z of system Z”, ρzA = ρA|Z=z.
Let us now go back to the exercise. You are asked to prove that for states like that of Eq. 1,

H(AZ) = H(Z)ρ +
∑
z

pz H(A|Z = z)

= H(Z)ρ +
∑
z

pz H(A)ρzA .

I suggest that you expand the matrices ρzA in their eigenbases, for instance

ρzA =
∑
k

λzk |kz〉〈kz|.

If you now write ρZA using those expressions for ρzA and compute its entropy, you should get the desired
result.
I won’t help you in part b) 2. Part b) 3. asks you to show that for these states H(Z|A) ≥ 0. One trick that
may help is to imagine a system Y that is just a copy of Z and a state

ρZAY =
∑
k

pz|z〉〈z| ⊗ ρzA ⊗ |y〉〈y|.

You may check that the entropy of this state is the same than that of ρAB. In fact, you can show that
H(ZAY ) = H(ZA) and H(Z) = H(Y ). Now use strong subaddivity to show what you want.
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Exercise 9.2 Majorisation and entanglement catalysis

Typo on the exercise sheet: in Exercise 9.2 c), we should have

|ψ〉AB =
√
0.4 |00〉+

√
0.4 |11〉+

√
0.1 |22〉+

√
0.1 |33〉,

with
√

0.4 instead of
√

4.
To learn more about majorization, check Section 5.3 of the script (p. 55 of the latest version), and this book
by Nielsen and Vidal: http://www.rintonpress.com/journals/qic-1-1/vidal.pdf .
Quick recap: say that ρ and σ are d-dimensional states with eigenvalues {ai}i and {bi}i, respectively. Then
spec (ρ) ≺ spec (τ) means that

k∑
i=1

ai ≤
k∑
i=1

bi,∀k ≤ d.

In part a) you just have to apply this to the qubit case, d = 2, and see the consequences for the Bloch
vectors of the two states. Express the eigenvalues of ρ (and σ) as a function of |~r| (and |~t|) and the result
should be direct.
For part b) 3. we apply a (von Neumann) projective measurement on ρ. The post-measurement state, not

conditioned on the outcome, is just ρ′ =
∑

k PkρPk, with
∑

k P
†
kPk = 1. We consider only orthonormal

projectors, so P †
k = P 2

k = Pk. Note also that PkP` = P`Pk = δk`Pk. An example of such a POVM is just

to measure in an orthonormal basis, or a coarse-graining of that measurement, like P1 =
∑5

x=1 |x〉〈x|, P2 =∑8
x=6 |x〉〈x|, for an o.n. basis {|x〉}8x=1.

We want to show that ρ′ ≺ ρ. Here is a suggestion on how to prove it. Say there are n projectors {Pk}k in
total. Create a family of operators U1, U2, . . . , Un defined as

Uj =

n∑
k=1

Exp

[
2πi

jk

n

]
Pk,

and check that they are unitaries. Now see that∑
j

∑
k

UjρU
†
j = nρ′.

Finally, use Corollary 5.3.3 from the script to prove the desired result.
For an alternative proof, start by proving the statement for two orthogonal projectors, and then use induction
to obtain the general case.
Part c) is pretty straight-forward, and pretty strange! Extra: Can you think of an explicit procedure that
Alice and Bob may use to take |ψ〉|τ〉 → |φ〉|τ〉 via LOCC?

Exercise 9.3 Information measures bonanza

Quantum smooth entropies and mutual information look pretty much like their classical counterparts in the
non-conditional case. Wait for conditional smooth entropies. *evil laugh* . . . They’re not that bad. *evil
laugh* . . . Really.
I will leave you to solve this exercise without help. *evil laugh* *choke*
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