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Definitions: von Neumann entropy

In this series we will derive some useful properties of the von Neumann entropy: the quantum version of Shannon entropy.
We will also look at the strangeness of quantum mutual information. Before we start, here are a few definitions.
The von Neumann entropy of a density operator p € S(H 4) is defined as

H(A), = —Tr(plogp) = ZA log i, (1)

where {);}, are the eigenvalues of p.

Given a composite system Ha @ Hp ® Hc we write H(AB), to denote the entropy of the reduced state of a subsystem,
pap = Tre(papce). When the state p is obvious from the context we drop the indices.

The conditional von Neumann entropy is defined as

H(A|B)p = H(AB)p - H(B)p‘ (2)

In the Alice-and-Bob picture this quantifies the uncertainty that Bob (who holds the B part of the quantum state pap)
still has about Alice’s state.
The strong sub-additivity property of the von Neumann entropy is very useful. It applies to a tripartite composite system
Ha®@Hp @ Hce,

H(A|BC), < H(A|B),. 3)

Exercise 9.1 Some properties of von Neumann entropy
a) Prove the following general properties of the von Neumann entropy:

1. If pap is pure, then H(A), = H(B),.
2. If two systems are independent, pap = pa ® pp, then H(AB), = H(A),, + H(B),,

b) Consider a bipartite state that is classical on subsystem Z: pza = >, p.|2)(2|z ® p% for some basis {|z)z}, of Hz.
Show that:

1. The conditional entropy of the quantum part, A, given the classical information Z is
H(A|Z), sz (AlZ = 2), (4)

where H(A|Z = z) = H(A),, .
2. The entropy of A is concave,

>sz (A|Z = 2). (5)

3. The entropy of a classical probability distribution {p.}, cannot be negative, even if one has access to extra
quantum information, A,

H(Z|A), > 0. (6)

Remark: Eq (6) holds in general only for classical Z. Bell states are immediate counterezamples in the fully
quantum case.



Exercise 9.2 Majorisation and entanglement catalysis

a) Warm-up. Let p and 7 be two single-qubit states characterized by their Bloch vectors,

1 1 -
p=5(1+76), T=s1+13).

Show that spec (p) < spec(7) if and only if |r| < |t|. Here, spec(p) denotes the spectrum of p, i.e., the set of
eigenvalues of p.

b) We perform a projective measurement described by the POVM {P;}, on a state p. Denote the post-measurement
state (not conditioned on the outcome) by p’. Show that spec (p') < spec (p).

¢) We saw that two parties that share an initial bipartite pure state |1)) 4p can transform it into another state |¢) ap
via LOCC if and only if §(¢0) < §(¢) (Theorem 5.3.4). Here, §(¢)) = spec (Tra|t)(|) is the vector formed by the
eigenvalues of the reduced density matrices on each side.

There are situations where, even if that

condition is not satisfied, having access to A A A A
an extra entangled state |7)4p (a cata-

LOCC
lyst) allows the players to transform [i) v ¢ ¢ !
into |¢) and return the catalyst untouched  ggph B B B B

in the end.

Consider the following three bipartite states (on a four-level system on each side),

) ap = V0.4 |00) + 0.4 |11) + /0.1 [22)+/0.1 [33), 16) = V0.5 [00) + V0.25 |11) + v0.25 [22),
|7) a5 = V0.6 |00) + /0.4 [11).

Check that §(¢0) < §(¢) does not hold, but §(¢ ® 7) < §(¢ ® 7) does.

(Note that to compute §(1) ® 7) you have to trace out A and A’ to obtain the reduced density matrix on Bob’s side
(BB').)

Exercise 9.3 Information measures bonanza

Take a system A in state p. Non-conditional quantum min- and max-entropies are given by

Hpin(A), = —log Aeé%%)é(p) A, Hpax(A), = logrank(p).

For instance, if p4 has eigenvalues spec (pa) = {0.6,0.2,0.2,0}, we have Hy,in(A4), = —10g0.6 and Hyax(A), = log 3.
The mutual information measures correlations between two systems. For pap, we have

I(A: B), = H(A),+ H(B), — H(AB),
= H(A), — H(A[B),.

a) Show that if spec(p) < spec(7), then the entropy of p is larger than or equal to the entropy of 7, for the von
Neumann, min- and max-entropies.

b) Consider two qubits A and B in a joint state pag.

1. Prove that the mutual information of the Bell state [¥1) = % (|00) 4 |11)) is maximal for a two-qubit system.
This is why we say that Bell states are maximally entangled.

2. Show that I(A : B) <1 for classically correlated states, pap = p|0)(0|a @ 0% + (1 — p)|[1){1|a ® ok (where
0<p<1).

¢) Show that if the bipartite state |¢)) 4ap can be transformed into |¢) via LOCC (without catalysts), then I(A : B), >
I(A . B)¢.



