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Exercise 6.1 Distance bounds

In this exercise we’ll bring together some of the concepts and techniques you have been learning over the past three weeks:
purification, fidelity and trace distance.
The idea here is that we want to create a maximally entangled state |Ψ〉 between two systems A and A′. We need this state
to perform a cool quantum task (say for instance teleportation, which we will introduce later in the lecture). However,
we are not sure we can create exactly |Ψ〉. We do know that we can create a state in A ⊗ B such that B has almost
no information about A: ρAB ≈ 1A/|A| ⊗ ρB . How can this help us find an (approximately) maximally entangled state
between A and A′? And what is the probability that something might go wrong with out cool quantum task?
This may look like a contrived setting, but it’s actually quite common that we can find a state like ρAB (e.g. using
decoupling; stick to Advanced Topics in the next semester to learn more about it!).

a) Given a trace-preserving quantum operation E and two states ρ and σ, show that

δ (E(σ), E(ρ)) ≤ δ(σ, ρ).

This means that the probability that any operation (e.g., a measurement) performed on σ can be distinguished from
the same operation on ρ is at most δ(σ, ρ).

b) Show that any purification of the state ρAB = 1A

|HA| ⊗ ρB has the form

|ψ〉AA′BB′ = |Ψ〉AA′ ⊗ |ψ〉BB′ ,

where |Ψ〉AA′ = |HA|−
1
2

∑
i |i〉A|i〉A′ is a maximally entangled state, and |ψ〉BB′ is a purification of ρB .

c) Show that 1− F (ρ, σ) ≤ δ(ρ, σ) ≤
√

1− F (ρ, σ)2.

d) Consider a state σAB that is ε-distant from ρAB according to the trace distance, i.e.

δ

(
σAB ,

1A

|HA|
⊗ ρB

)
≤ ε.

Find an upper bound for

δ (|φ〉ABP , |Ψ〉AA′ ⊗ |ψ〉BB′) ,

where |φ〉ABP is a purification of σAB . You can take for instance HP = HA′ ⊗HB′ .

Exercise 6.2 Classical channels as trace-preserving completely positive maps.

In this exercise we will see how to represent classsical channels as trace-preserving completely positive maps (TPCPMs).

a) Take the binary symmetric channel p,

1 - p

1 - p

p
p

X Y

.

Recall that we can represent the probability distributions on both ends of the channel as quantum states in a
given basis: for instance, if PX(0) = q, PX(1) = 1 − q, we may express this as the 1-qubit mixed state ρX =
q |0〉〈0|+ (1− q) |1〉〈1|.
What is the quantum state ρY that represents the final probability distribution PY in the computational basis?
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b) Now we want to represent the channel as a map

Ep : S(HX) 7→ S(HY )

ρX → ρY .

An operator-sum representation (also called the Kraus-operator representation) of a CPTP map E : S(HX)→ S(HY )
is a decomposition {Ek}k of operators Ek ∈ Hom(HX ,HY ),

∑
k EkEk

† = 1, such that

E(ρX) =
∑
k

EkρXEk
†.

Find an operator-sum representation of Ep.

Hint: think of each operator Ek = Exy as the representation of the branch that maps input x to output y.

c) Now we have a representation of the classical channel in terms of the evolution of a quantum state. What happens
if the initial state ρX is not diagonal in the computational basis?

d) Now consider an arbitrary classical channel p from an n-bit space X to an m-bit space Y , defined by the conditional
probabilities

{
PY |X=x(y)

}
xy

.

Express p as a map Ep : S(HX)→ S(HY ) in the operator-sum representation.

Exercise 6.3 TPCPMs as channels

Now we will go the other way around: we are given a TPCPM and will find a way of expressing it as a channel, and
compute its capacity.
Consider two single-qubit Hilbert spaces HA and HB and a TPCPM

Ep : S(HX) 7→ S(HY )

ρ→ p
1

2
+ (1− p)ρ.

a) Find an operator-sum representation for Ep.

Hint: Remember that ρ ∈ S(HA) can be written in the Bloch sphere representation:

ρ =
1

2
(1 + ~r · ~σ), ~r ∈ R3, |~r| ≤ 1, ~r · ~σ = rxσx + ryσy + rzσz, (1)

where σx, σy and σz are Pauli matrices. It may be useful to show that

1 =
1

2
(ρ+ σxρσx + σyρσy + σzρσz).

b) What happens to the Bloch radius ~r of the initial state when we apply Ep? How can this be interpreted?

c) Now we will see what happens when we use this quantum channel to send classical information. We start with
an arbitrary input probability distribution PX(0) = q, PX(1) = 1 − q. We encode this distribution in a state
ρX = q |0〉〈0|+ (1− q)|1〉〈1|. Now we send ρX over the quantum channel, i.e., we let it evolve under Ep. Finally, we
measure the output state, ρY = Ep(ρX) in the computational basis.

Compute the conditional probabilities
{
PY |X=x(y)

}
xy

.

d) Maximise the mutual information over q to find the classical channel capacity of the depolarizing channel.

e) What happens to the channel capacity if we measure the final state in a different basis?
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