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Exercise 2.1 Entropy as a measure of uncertainty

These two graphs represent the probability distributions of the weather conditions for a summer day in Zurich and
Aljezur. We will try to quantify the uncertainty we have about the weather in both cases using some entropy measures.
Here log ≡ log2.
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a) Suppose you want to make lists of all the weather possibilities in both places (for instance, to decide how many
different sets of clothes you need when visiting those places, to be on the safe side). How long would the two lists
be?

Realistically, you do not expect snow in Porto Covo or tornados in Zurich on a summer day—you can safely leave
those possibilities out of your lists if you allow for a very small error tolerance. How long are the lists if you dismiss
very unlikely events? Relate those results to the max-entropy,

Hmax(X)P = log |PX |,

where |PX | is the size of the support of PX (ie the number of outcomes with non-zero probability), and to its smooth
version,

Hε
max(X)P = min

QX∈Bε(PX)
Hmax(X)Q,

where the minimum goes over all probability distributions QX that are ε-close to PX according to the trace distance.

b) How likely are you to correctly guess the weather in each place? Relate that to the classical min-entropy of a
probability distribution PX over X is defined as

Hmin(X)P = − log max
x∈X

PX(x).

Exercise 2.2 Mutual Information

After losing a bet with your Scottish grandfather about whether listening to the radio forecast would help you predict the
weather, you have been studying information theory compulsively to try to come up with a clever argument that would
make him stop mocking you. You are convinced that even though you did not guess correctly more often than he, you
somehow have more information about the weather than he does.

a) The mutual information between two random variables is given by

I(X : Y )P = H(X)P −H(X|Y )P ,

where H(X) is the Shannon entropy of X,

H(X)P = 〈− logPX(x)〉x = −
∑
x

PX(x) logPX(x)
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and H(X|Y ) is the conditional Shannon entropy of X given Y ,

H(X|Y )P = 〈− logPX|Y=y(x)〉x,y = −
∑
x,y

PXY (x, y) logPX|Y=y(x) = H(XY )P −H(Y )P .

Compute the mutual information between your guess and the actual weather, and do the same for your grandfather.
Remember that your grandfather knows it rains on 80% of the days. You also listen to the forecst, knowing it is
right 80% of the time and always correct when it predicts rain.

b) You devise the following betting game to prove that your extra information is useful. You and your grandfather
start with £1. Every night each of you can bet part of your money on the next day’s weather. If your guess was
right you double the amount you bet (e.g., in the first night your grandfather bets £0.2 on rain; if it rains he ends
up with £1.2, otherwise with £0.8). Any winnings can be used in future rounds.

What would your strategy be? And your grandfather’s? After N days, what is the expected gain for each of you?
And what is the probability that he finishes with more money than you?

Exercise 2.3 Channel capacity
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(c) Yet Another Channel

a) The asymptotic channel capacity is given by

C = max
PX

I(X : Y ).

Calculate the asymptotic capacities of the first two channels depicted above.

b) We can exploit the symmetries of some channels to simplify the calculation of the capacity.

Consider N possible probability distributions as input to a general channel,
{
P iX
}
i
, with the property that I(X :

Y )P i = I(X : Y )P j ,∀i, j. Suppose you choose which distribution to use for the input by checking a random variable,
B, with possible values b = {1, . . . , N}. Show that I(X : Y |B) ≤ I(X : Y ).

How can you use that to find the probability distribution PX that maximises the mutual information for symmetric
channels? Hint: consider

{
P iX
}
i

permutations of P 1
X .

c) Using the result from b), compute the capacity of the last channel. How would you proceed to reliably transmit one
bit of information?

2


