Sheet 9

```
Deadline: 5 December 2011
```

Exercise 1 [Dyson series]:
(i) Show first that

$$
\begin{aligned}
U\left(t, t_{0}\right)=1+(-i) \int_{t_{0}}^{t} d t_{1} & H_{W}\left(t_{1}\right)+(-i)^{2} \int_{t_{0}}^{t} d t_{1} \int_{t_{0}}^{t_{1}} d t_{2} H_{W}\left(t_{1}\right) H_{W}\left(t_{2}\right) \\
& +(-i)^{3} \int_{t_{0}}^{t} d t_{1} \int_{t_{0}}^{t_{1}} d t_{2} \int_{t_{0}}^{t_{2}} d t_{3} H_{W}\left(t_{1}\right) H_{W}\left(t_{2}\right) H_{W}\left(t_{3}\right)+\cdots
\end{aligned}
$$

solves the differential equation

$$
i \frac{\partial}{\partial t} U\left(t, t_{0}\right)=H_{W}(t) U\left(t, t_{0}\right)
$$

(ii) Then show that one can rewrite $U\left(t, t_{0}\right)$ as

$$
\begin{aligned}
U\left(t, t_{0}\right) & =1+(-i) \int_{t_{0}}^{t} d t_{1} H_{W}\left(t_{1}\right)+\frac{(-i)^{2}}{2!} \int_{t_{0}}^{t} d t_{1} \int_{t_{0}}^{t} d t_{2} \mathcal{T}\left\{H_{W}\left(t_{1}\right) H_{W}\left(t_{2}\right)\right\}+\cdots \\
& \equiv \mathcal{T}\left\{\exp \left[-i \int_{t_{0}}^{t} d t^{\prime} H_{W}\left(t^{\prime}\right)\right]\right\}
\end{aligned}
$$

Exercise 2 [Supersymmetry: Wess-Zumino model]: It is possible to construct field theories with continuous symmetries linking fermions and bosons; such theories are called supersymmetric.
(i) The simplest example of a supersymmetric field theory is the free Wess-Zumino model, which is the theory of a free complex scalar and a free Weyl fermion. The Lagrangian is

$$
\begin{equation*}
\mathcal{L}=\partial_{\mu} \Phi^{*} \partial^{\mu} \Phi+i \chi^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \chi+F^{*} F, \tag{1}
\end{equation*}
$$

where F is an auxiliary complex scalar field. Consider the transformations

$$
\begin{align*}
\delta \Phi & =-i \varepsilon^{T} \sigma^{2} \chi \\
\delta \chi & =\varepsilon F-\sigma^{\mu} \partial_{\mu} \Phi \sigma^{2} \varepsilon^{*} \tag{2}\\
\delta F & =-i \varepsilon^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \chi,
\end{align*}
$$

where ε is a 2-component spinor of Grassmann numbers. (Grassmann numbers anticommute with Grassmann numbers, but commute with regular numbers.) Recalling the identities for $\sigma, \bar{\sigma}$ from Ex. sheet 2, show that the Lagrangian of eq. (1) is invariant (up to a 4-divergence) under this set of transformations.
(ii) We can add an interaction term to the Lagrangian. First we generalise the WessZumino model to n complex scalars and n Weyl spinors as

$$
\begin{equation*}
\mathcal{L}_{\text {free }}=\sum_{i=1}^{n}\left[\partial_{\mu} \Phi_{i}^{*} \partial^{\mu} \Phi_{i}+i \chi_{i}^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \chi_{i}+F_{i}^{*} F_{i}\right] . \tag{3}
\end{equation*}
$$

Next, let the superpotential W be a holomorphic function of the $\Phi_{i}, W=W\left[\Phi_{i}\right]$. Show that the Lagrangian

$$
\begin{equation*}
\mathcal{L}_{\text {full }}=\mathcal{L}_{\text {free }}+\left(F_{i} \frac{\partial W[\Phi]}{\partial \Phi_{i}}+\frac{i}{2} \frac{\partial^{2} W[\Phi]}{\partial \Phi_{i} \partial \Phi_{j}} \chi_{i}^{T} \sigma^{2} \chi_{j}+\text { h.c. }\right) \tag{4}
\end{equation*}
$$

is invariant under the supersymmetry transformations eq. (2).
Hint: Label the variation of $\mathcal{L}_{\text {full }}$ under SUSY transformations as $\delta \mathcal{L}$. Then
(1) use the Fierz identity

$$
\left(\varepsilon^{T} \sigma^{2} \psi_{j}\right)\left(\psi_{k}^{T} \sigma^{2} \psi_{n}\right)+\left(\varepsilon^{T} \sigma^{2} \psi_{k}\right)\left(\psi_{n}^{T} \sigma^{2} \psi_{j}\right)+\left(\varepsilon^{T} \sigma^{2} \psi_{n}\right)\left(\psi_{j}^{T} \sigma^{2} \psi_{k}\right)=0
$$

to show that the term with three fermions in $\delta \mathcal{L}$ vanishes;
(2) show that the terms in $\delta \mathcal{L}$ with one derivative ∂_{μ} add up to a total divergence;
(3) show then that the terms with F, F^{*} in $\delta \mathcal{L}$ add to zero.
(iii) For the case $n=1$, show that a superpotential of the form

$$
W[\Phi]=\frac{1}{2} m \Phi^{2}
$$

where m is a positive constant, implies that Φ and χ have the same mass.
Hint: Evaluate the equations of motion for F, then for the other fields. What equation do you get for the Weyl spinor?

