Sheet 7

Deadline: 21 November 2011

Exercise 1 [Quantisation of scalar field from transformation property]:
In this exercise we want to deduce the canonical commutation relations for the free massive scalar field from the requirement that the stress energy tensor induces the appropriate space-time transformations. Make an ansatz for the scalar field with Lagrangian

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2}(\partial \phi)^{2}-\frac{1}{2} m^{2} \phi^{2} \tag{1}
\end{equation*}
$$

as

$$
\begin{equation*}
\phi(t, \mathbf{x})=\int d \tilde{k}\left[a(k) e^{-i k \cdot x}+a^{\dagger}(k) e^{i k \cdot x}\right] \tag{2}
\end{equation*}
$$

and recall that the stress energy tensor is defined as

$$
\begin{equation*}
T^{\mu}{ }_{\nu} \equiv \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{i}\right)} \partial_{\nu} \phi_{i}-\delta^{\mu}{ }_{\nu} \mathcal{L} . \tag{3}
\end{equation*}
$$

Express the momentum operators

$$
\begin{equation*}
P^{i}=\int d^{3} \mathbf{x} T^{0 i} \tag{4}
\end{equation*}
$$

in terms of the modes $a(k)$ and $a^{\dagger}(k)$, and determine their commutation relations from the requirement that

$$
\begin{equation*}
\left[P^{i}, \phi(t, \mathbf{x})\right]=-i \partial^{i} \phi(t, \mathbf{x}) . \tag{5}
\end{equation*}
$$

Exercise 2 [Feynman propagator for Dirac fields]:
Time ordering for fermionic fields is defined by

$$
\begin{equation*}
\mathcal{T}\left(\psi_{\xi}(x) \bar{\psi}_{\eta}(y)\right)=\theta\left(x^{0}-y^{0}\right) \psi_{\xi}(x) \bar{\psi}_{\eta}(y)-\theta\left(y^{0}-x^{0}\right) \bar{\psi}_{\eta}(y) \psi_{\xi}(x) \tag{6}
\end{equation*}
$$

The fermionic Dirac fields can be written in terms of creation and annihilation operators as

$$
\begin{equation*}
\psi(x)=\sum_{\alpha=1,2} \int d \tilde{k}\left(b_{\alpha}(k) u^{(\alpha)}(k) e^{-i k \cdot x}+d_{\alpha}^{\dagger}(k) v^{(\alpha)}(k) e^{i k \cdot x}\right) \tag{7}
\end{equation*}
$$

with anticommutation relations

$$
\begin{equation*}
\left\{b_{\alpha}(k), b_{\beta}^{\dagger}\left(k^{\prime}\right)\right\}=\left\{d_{\alpha}(k), d_{\beta}^{\dagger}\left(k^{\prime}\right)\right\}=(2 \pi)^{3} 2 k^{0} \delta^{(3)}\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \delta_{\alpha \beta} . \tag{8}
\end{equation*}
$$

Calculate the time ordered expectation value of two Dirac fields and show that it equals

$$
\begin{align*}
i S_{F}(x-y)_{\xi \eta} & \equiv\langle 0| \mathcal{T}\left(\psi_{\xi}(x) \bar{\psi}_{\eta}(y)\right)|0\rangle \\
& =i \int \frac{d^{4} k}{(2 \pi)^{4}} e^{-i k \cdot(x-y)}\left(\frac{\not 4+m}{k^{2}-m^{2}+i \epsilon}\right)_{\xi \eta} \tag{9}
\end{align*}
$$

Check that it can be expressed in terms of the Feynman propagator of the scalar field theory as

$$
\begin{equation*}
S_{F}(x)=-(i \not \partial+m) G_{F}(x)=(i \not \partial+m) \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{e^{-i k \cdot(x-y)}}{k^{2}-m^{2}+i \epsilon} \tag{10}
\end{equation*}
$$

Exercise 3 [Spinor products]:

Let k_{0}^{μ}, k_{1}^{μ} be fixed 4 -vectors satisfying $k_{0}^{2}=0, k_{1}^{2}=-1, k_{0} \cdot k_{1}=0$. Define basic spinors in the following way: Let $u_{L 0}$ be the left-handed spinor for a fermion with momentum k_{0}, and define $u_{R 0}=\psi_{1} u_{L 0}$. Then, for any p such that p is lightlike $\left(p^{2}=0\right)$, define

$$
\begin{equation*}
u_{L}(p)=\frac{1}{\sqrt{2 p \cdot k_{0}}} \not p u_{R 0} \quad \text { and } \quad u_{R}(p)=\frac{1}{\sqrt{2 p \cdot k_{0}}} \not p u_{L 0} . \tag{11}
\end{equation*}
$$

This set of conventions defines the phases of spinors unambiguously (except when p is parallel to k_{0}).
(i) Show that $\psi_{0} u_{R 0}=0$. Show that, for any lightlike $p, p p u_{L}(p)=p p u_{R}(p)=0$.
(ii) For the choices $k_{0}=(E, 0,0,-E), k_{1}=(0,1,0,0)$, construct $u_{L 0}, u_{R 0}, u_{L}(p)$, and $u_{R}(p)$ explicity.
(iii) Define the spinor products $s\left(p_{1}, p_{2}\right)$ and $t\left(p_{1}, p_{2}\right)$, for p_{1}, p_{2} lightlike, by

$$
\begin{equation*}
s\left(p_{1}, p_{2}\right)=\bar{u}_{R}\left(p_{1}\right) u_{L}\left(p_{2}\right), \quad t\left(p_{1}, p_{2}\right)=\bar{u}_{L}\left(p_{1}\right) u_{R}\left(p_{2}\right) . \tag{12}
\end{equation*}
$$

Using the explicit forms for the u_{λ} given in part (ii), compute the spinor products explicitly and show that $t\left(p_{1}, p_{2}\right)=\left(s\left(p_{1}, p_{2}\right)\right)^{*}$ and $s\left(p_{1}, p_{2}\right)=-s\left(p_{2}, p_{1}\right)$. In addition, show that

$$
\begin{equation*}
\left|s\left(p_{1}, p_{2}\right)\right|^{2}=2 p_{1} \cdot p_{2} . \tag{13}
\end{equation*}
$$

Thus the spinor products are the square roots of 4 -vector dot products.
Hint: In the chiral basis,

$$
\gamma^{\mu}=\left(\begin{array}{cc}
0 & \sigma^{\mu} \\
\sigma^{\mu} & 0
\end{array}\right), \quad \gamma^{5}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right),
$$

the normalised Dirac spinor can be written as

$$
u^{\alpha}(p)=\binom{\sqrt{p \cdot \sigma} \xi^{\alpha}}{\sqrt{p \cdot \bar{\sigma}} \xi^{\alpha}}
$$

where ξ is a two-component spinor normalised to unity.

