# Sheet 5 <br> Deadline: 07 November 2011 

## Exercise 1 [Wick's Theorem ]:

The aim of this exercise is to prove by induction on the number of fields Wick's Theorem

$$
\begin{equation*}
\mathcal{T}\left(\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\right)=\mathcal{N}\left(\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)+\text { all possible contractions }\right) . \tag{1}
\end{equation*}
$$

Here the normal ordering only applies to the non-contracted fields, and time ordering is defined by

$$
\begin{equation*}
\mathcal{T}\left(\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\right)=\phi\left(x_{\pi(1)}\right) \cdots \phi\left(x_{\pi(n)}\right), \quad x_{\pi(1)}^{0}>x_{\pi(2)}^{0}>\cdots>x_{\pi(n)}^{0} \tag{2}
\end{equation*}
$$

while the normal ordering moves the annihilation operators to the right of creation operators

$$
\begin{equation*}
\mathcal{N}\left(\phi\left(x_{1}\right) \phi\left(x_{2}\right)\right)=\phi\left(x_{1}\right)_{+} \phi\left(x_{2}\right)_{+}+\phi\left(x_{1}\right)_{+} \phi\left(x_{2}\right)_{-}+\phi\left(x_{2}\right)_{+} \phi\left(x_{1}\right)_{-}+\phi\left(x_{1}\right)_{-} \phi\left(x_{2}\right)_{-}, \tag{3}
\end{equation*}
$$

where $\phi=\phi_{+}+\phi_{-}$with $\phi_{+}$containing the creation generators and $\phi_{-}$the annihilation generators. Furthermore we denote by the contraction of two operators the quantity

$$
\begin{equation*}
\phi\left(x_{1}\right) \phi\left(x_{2}\right)=\theta\left(x_{1}^{0}-x_{2}^{0}\right)\left[\phi_{-}\left(x_{1}\right), \phi_{+}\left(x_{2}\right)\right]+\theta\left(x_{2}^{0}-x_{1}^{0}\right)\left[\phi_{-}\left(x_{2}\right), \phi_{+}\left(x_{1}\right)\right] . \tag{4}
\end{equation*}
$$

(i) Prove that the contraction is a complex number (rather than an operator), and show that it agrees with $-i G_{\mathrm{F}}\left(x_{1}-x_{2}\right)$ that was calculated on Sheet 1, Exercise 2 (v).
(ii) Show first that (1) holds for the case of two fields.
(iii) Explain why one may assume, without loss of generality, that the fields in (1) are already time-ordered.
(iv) Then prove the formula by induction on the number of fields, i.e. assume that the formula is true for $m$ fields, and deduce it for $m+1$ fields.

Exercise 2 [Explicit solutions of the Wightman-propagator]:
As shown in the lectures the commutation relation of two scalar fields does not vanish at different times, and is given by

$$
\begin{align*}
{[\phi(x), \phi(y)] } & =\int \mathrm{d} \tilde{k}\left[e^{-i k \cdot(x-y)}-e^{i k \cdot(x-y)}\right]  \tag{5}\\
& =i\left(\Delta_{+}(x-y)-\Delta_{+}(y-x)\right) \\
i \Delta_{+}(z) & =\frac{1}{(2 \pi)^{3}} \int \frac{\mathrm{~d}^{3} \mathbf{p}}{2 \omega_{\mathbf{p}}} e^{-i p \cdot z}, \tag{6}
\end{align*}
$$

where $\mathrm{d} \tilde{k}=\frac{\mathrm{d}^{3} \mathbf{k}}{(2 \pi)^{3} 2 \omega_{\mathbf{k}}}$, and $\Delta_{+}(x)$ is the so called Wightman propagator. In special cases this propagator can be calculated explicitely.
(i) Show that for spacelike $x$ the solution of $\Delta_{+}(x)$ is a $K$-type Bessel function

$$
\begin{equation*}
\Delta_{+}(x)=\frac{m}{4 \pi^{2} \sqrt{-x^{2}}} K_{1}\left(m \sqrt{-x^{2}}\right), \tag{7}
\end{equation*}
$$

and hence deduce that the Feynman propagator $G_{\mathrm{F}}(x)$ drops off exponetially for large $|\mathbf{x}|$.
Hint: Use that

$$
\begin{equation*}
K_{\nu}(z)=\frac{\Gamma(\nu+1 / 2)(2 z)^{\nu}}{\sqrt{\pi}} \int_{0}^{\infty} \mathrm{d} t \frac{\cos (t)}{\left(t^{2}+z^{2}\right)^{\nu+1 / 2}} \tag{8}
\end{equation*}
$$

where $\Gamma(w)$ is the Gamma function with particular value $\Gamma(3 / 2)=1 / 2 \sqrt{\pi}$. Then note that the relation between the Feynman and the Wightman propagator is

$$
\begin{equation*}
G_{\mathrm{F}}(z)=\theta\left(z^{0}\right) \Delta_{+}(z)+\theta\left(-z^{0}\right) \Delta_{+}(-z) . \tag{9}
\end{equation*}
$$

(ii) For the case of $m=0$ compute both $\Delta_{+}(x)$ and $G_{F}(x)$.

Hint: Show and use that

$$
\begin{align*}
\int_{S^{2}} e^{i|\mathbf{p}| \mathbf{w} \cdot \mathbf{x}} \mathrm{d} w & =\frac{4 \pi \sin (|\mathbf{p}||\mathbf{x}|)}{|\mathbf{p}||\mathbf{x}|}, \quad|\mathbf{w}|=1  \tag{10}\\
-i \int_{0}^{\infty} \mathrm{d} u e^{i s u} & =P\left(\frac{1}{s}\right)-i \pi \delta(s) \tag{11}
\end{align*}
$$

where $P$ is the principal value.

