Exercise 1 [Linear sigma model]:

The interactions of pions at low energy can be described by a phenomenological model, called the linear sigma model. Essentially, this model consists of N real scalar fields coupled by a ϕ^{4} interaction that is symmetric under rotations of the N fields. More specifically, let $\Phi^{i}(x), i=1, \ldots, N$ be a set of N fields, governed by the Hamiltonian

$$
\begin{equation*}
H=\int d^{3} x\left(\frac{1}{2}\left(\Pi^{i}\right)^{2}+\frac{1}{2}\left(\nabla \Phi^{i}\right)^{2}+V\left(\Phi^{2}\right)\right) \tag{1}
\end{equation*}
$$

where $\sum_{i}\left(\Phi^{i}\right)^{2}=\vec{\Phi} \cdot \vec{\Phi}$, and

$$
\begin{equation*}
V\left(\Phi^{2}\right)=\frac{1}{2} m^{2}(\vec{\Phi} \cdot \vec{\Phi})+\frac{\lambda}{4}(\vec{\Phi} \cdot \vec{\Phi})^{2} \tag{2}
\end{equation*}
$$

is a function symmetric under rotations of $\vec{\Phi}$. For (classical) field configurations of $\Phi^{i}(x)$ that are constant in space and time, this term gives the only contribution to H; hence, V is the field potential energy.
(i) Analyse the linear sigma model for $m^{2}>0$ by noticing that, for $\lambda=0$, the Hamiltonian given above is exactly N copies of the Klein-Gordon Hamiltonian. We can then calculate scattering amplitudes in terms of a perturbation series in the parameter λ. Show that the propagator is

$$
\begin{equation*}
\Phi^{i}(x) \Phi^{j}(y)=\delta^{i j} D_{F}(x-y), \tag{3}
\end{equation*}
$$

where D_{F} is the standard Klein-Gordon propagator for mass m, and that there is one type of vertex given by

(This is to say, the vertex between two Φ^{1} 's and two Φ^{2} 's has the value ($-2 i \lambda$); that between four Φ^{1} 's has the value ($-6 i \lambda$).)

Compute, to leading order in λ, the differential cross section $\frac{d \sigma}{d \Omega}$ in the center-of-mass frame, for the scattering processes

$$
\begin{equation*}
\Phi^{1} \Phi^{2} \rightarrow \Phi^{1} \Phi^{2}, \quad \Phi^{1} \Phi^{1} \rightarrow \Phi^{2} \Phi^{2}, \quad \text { and } \quad \Phi^{1} \Phi^{1} \rightarrow \Phi^{1} \Phi^{1} \tag{4}
\end{equation*}
$$

as functions of the center-of-mass energy.

Hint: The formula for the differential cross section in the case where all particles have the same mass is

$$
\begin{equation*}
\left(\frac{d \sigma}{d \Omega}\right)_{\mathrm{CM}}=\frac{|\mathcal{M}|^{2}}{64 \pi^{2} E_{\mathrm{CM}}^{2}}, \tag{5}
\end{equation*}
$$

where CM indicates the center-of-mass frame. The invariant matrix element \mathcal{M} is defined by

$$
\begin{equation*}
\left\langle p_{1}^{\prime}, p_{2}^{\prime}, \ldots\right| i T\left|p_{1}, p_{2}\right\rangle=(2 \pi)^{4} \delta^{(4)}\left(p_{1}+p_{2}-\sum p_{f}\right) \cdot i \mathcal{M}\left(p_{1}, p_{2} \rightarrow p_{f}\right) \tag{6}
\end{equation*}
$$

where T is the part of the S-matrix due interactions, i.e.

$$
\begin{equation*}
S=1+i T=\mathcal{T}\left(e^{-i \int d^{4} x H_{\mathrm{int}}(x)}\right) \tag{7}
\end{equation*}
$$

(ii) Now consider the case $m^{2}<0$, introducing the parameter $m^{2}=-\mu^{2}$. In this case V has a local maximum, rather than a minimum, at $\Phi^{i}=0$. Since V is a potential energy, this implies that the ground state of the theory is not near $\Phi^{i}=0$ but rather is obtained by shifting Φ^{i} towards the minimum of V. By rotational invariance, we can consider this shift to be in the $N^{\text {th }}$ direction. Thus we make the ansatz

$$
\begin{align*}
\Phi^{i}(x) & =\pi^{i}(x), \quad i=1, \ldots, N-1 \\
\Phi^{N}(x) & =v+\sigma(x), \tag{8}
\end{align*}
$$

where v is a constant chosen so as to minimise V. (The notation π^{i} is meant to suggest a relation to the pion field, and should not be confused with the canonical momentum.) Show that, in these new coordinates (and substituting for v its expression in terms of λ and μ), we have a theory of a massive σ field and $N-1$ massless pion fields, interacting through cubic and quartic potential energy terms which all become small as $\lambda \rightarrow 0$. Construct the Feynman rules by assigning values to the propagators and vertices

$$
\stackrel{\square}{\pi^{i} \pi^{j}}=\quad i \longrightarrow \longrightarrow j
$$

(iii) Compute the scattering amplitude for the process

$$
\begin{equation*}
\pi^{i}\left(p_{1}\right) \pi^{j}\left(p_{2}\right) \rightarrow \pi^{k}\left(p_{3}\right) \pi^{l}\left(p_{4}\right) \tag{9}
\end{equation*}
$$

to leading order in λ. There are now four Feynman diagrams that contribute

Show that, at threshold ($\left.\vec{p}_{i}=0\right)$, these diagrams sum to zero.
Hint: It may be easiest to first consider the specific process $\pi^{1} \pi^{1} \rightarrow \pi^{2} \pi^{2}$, for which only the first and fourth diagrams are nonzero, before tackling the general case.

Show that, in the special case $N=2$ (1 species of pion), the terms at $\mathcal{O}\left(p^{2}\right)$ also cancel. (iv) Add to V a symmetry-breaking term,

$$
\begin{equation*}
\Delta V=-a \Phi^{N} \tag{10}
\end{equation*}
$$

where a is a (small) constant. (In QCD, a term of this form is produced if the u and d quarks have the same non-vanishing mass.) Find the new value of v that minimises V, and work out the content of the theory about that point. Show that the pion acquires a mass with $m_{\pi}^{2} \sim a$, and show that the pion scattering amplitude at threshold is now non-vanishing and also proportional to a.

