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Exercise 2.1 Computing the quantum effective action

In this exercise you are invited to calculate the quantum effective Potential at 1-loop in φ4-
theory. The classical action of φ4- theory is
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i) Write the scalar field φ as φ = φcl + η, where φcl shall denote the classical field which
we assume to be space independent, while η represents quantum fluctuations. Expand the
classical action around φ = φcl up to second order, and infer using
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that (let Γ(φcl) =
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Where V4 =
∫

d4x = (2π)4δ(4)(0).

ii) Show that the 1-loop correction to Γ(φcl) is given by
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cl. Use the identity
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to show that
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The matrix Kxy can be diagonalised by fourier transformation, show that it’s Fourier
Transform is

Kpq =
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δ(4)(p − q).

and hence that (promoting the dimension from 4 to D, and remembering about the iε

prescription )
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Let λ → λ + δλ and m → m + δm and find a minimal choice for δλ and δm to cure the
divergences in Γ(φcl). For further reading see for example Peskin & Schroeder Pg.373, as
well as Weinberg II Pg. 70.


