Thermodynamik Serie 8

HS 10 Prof. G. Blatter

Aufgabe 8.1 Gasverflüssigung

In Aufgabe 3.2. wurde anhand des Joule-Kelvin Versuchs gezeigt, dass bei erhaltener Enthalpie gilt:

$$\left. \frac{\partial T}{\partial p} \right|_{H} = \frac{1}{C_{p}} \left(T \left. \frac{\partial V}{\partial T} \right|_{p} - V \right) = \frac{V}{C_{p}} \left(T\alpha - 1 \right) \tag{1}$$

wobei α den Ausdehnungskoeffizienten bezeichnet. Für das ideale Gas verschwindet dieser Ausdruck, da $\alpha = 1/T$ gilt.

Ein reales Gas erfährt je nach Vorzeichen von $\partial T/\partial p|_H$ eine Abkühlung bzw. eine Erwärmung während der isenthalpischen Expansion (vgl. Aufgabe 3.2.4.). Die Kurve, welche diese beiden Gebiete im p-T Diagramm trennt, heisst Inversionskurve. Ziel dieser Aufgabe ist es, die Inversionskurve für das Van der Waals Gas zu bestimmen.

Zur Erinnerung: Das Van der Waals Gas befolgt die Gleichung:

$$\left(p + \frac{an^2}{V^2}\right)(V - nb) = nRT$$

a) Zeige, dass der Ausdehnungskoeffizient des Van der Waals Gases gegeben ist durch:

$$\alpha = \frac{V - nb}{VT - \frac{2an}{R} \left(\frac{V - nb}{V}\right)^2}.$$

b) Um daraus die Inversionskurve zu erhalten, setze nun α in Gleichung (1) ein und löse nach V auf. Benutze dann die Van der Waals Gleichung, um p(T) zu berechnen. Die Lösung lautet:

$$p(T) = p_C \left(24\sqrt{3T/T_C} - 12T/T_C - 27 \right)$$

wobei p_C und T_C der Druck bzw. die Temperatur am kritischen Punkt bezeichnen (vgl. Kap. 7.3.1. und Aufgabe 7.2.f.):

$$p_C = \frac{1}{27} \frac{a}{b^2}, \qquad T_C = \frac{8}{27} \frac{a}{bR}.$$
 (2)

c) Skizziere die Inversionskurve, indem du das Verhalten von p(T) für kleine und grosse Temperaturen betrachtest. Begründe die Vorzeichenwechsel von $\partial T/\partial p|_H$ mikroskopisch.

Bemerkung: Die Joule-Thomson Expansion ist einer der Schritte im Zyklus üblicher Kühlschränke.

Aufgabe 8.2 Nukleation*

In dieser Aufgabe betrachten wir eine elastische d-dimensionale Membran, die in einem (d+1)-dimensionalem Raum eingebettet ist (siehe Bild für d=1 und d=2). Die Hyperfläche, die die Membran im (d+1)-dimensionalen Raum einnimmt, sei durch $(x_1, \ldots, x_d, u(\mathbf{x}))$ beschrieben, wobei \mathbf{x} die d Koordinaten der Membran seien und u die Position der Membran in transversaler Richtung. Wir nehmen an, die Membran sei einem Potential der Form

$$V(u) = V_0(1 - \cos(k_0 u)) - Fu \tag{3}$$

ausgesetzt (Waschbrett Potential). Der lineare Anteil im Potential treibt die Membran in Richtung von u. Die elastische Energie einer Deformation der Membran sei proportional zu $(\nabla u)^2$ und wir erhalten das Energiefunktional

$$H[u] = \int d^d x \left(\frac{C}{2} \left(\nabla u(\mathbf{x}) \right)^2 + V(u(\mathbf{x})) \right). \tag{4}$$

- a) Zeichne das Potential für verschiedene Werte der externen Kraft F. Definiere und bestimme die kritische Kraft F_c für die sich die Potentiallandschaft qualitativ verändert. Was für ein Verhalten folgt daraus für die Bewegung der Membran?
- b) Wir betrachten nun den Fall $F \ll F_c$ und $d \geq 2$. Schätze die Energie U(R) eines Nukleus mit Radius R ab. Ein Nukleus ist eine lokale Deformation der Membran, bei der ein Teil der Membran ins nächste Potential Minimum hineinragt. Berechne zunächst die Wandbreite w in der Näherung, dass $u(\mathbf{x})$ stückweise linear sei (der Einfachheit halber verwende F = 0). Bestimme den kritschen Radius, ab dem der Nukleus anfängt zu wachsen. Warum bezeichnet man $U(R_c)$ als Aktivierungsenergie und warum ist diese abhängig von F? Wie hängt U(R) von d ab?
- c) Bestimme für den Fall $F < F_c$ die Driftgeschwindigkeit v der Membran als Funktion der externen Kraft F für $d \geq 2$. Die Driftgeschwindigkeit ergibt sich aus der thermisch aktivierten Übergangsrate der Membran von einem Minimum ins benachbarte Minimum. Die Übergangswahrscheinlichkeit von einem Zustand a in einen anderen Zustand b sei gegeben durch

$$W_{a \to b} = e^{-U_{ab}/k_B T}. (5)$$

Hierbei bezeichnet U_{ab} die Anregungsenergie um von a nach b zu gelangen.

d) In einer Dimension (d = 1, elastische Schnur) bezeichnet

$$u_{\rm kink}(x) = \frac{4}{k_0} \arctan(e^{x/w}) \tag{6}$$

ein Extremum¹ des Energiefunktionals H[u] für F=0. Berechne die Konstante w. Berechne die Energie des Nukleus

$$U(R) \approx 2E_{\text{kink}} - Fu_0 R,\tag{7}$$

Thamit ist gemeint, dass die erste Variation von H für $u(\mathbf{x}) = u_{\text{kink}}(\mathbf{x})$ verschwindet, $\delta H[u_{\text{kink}}] = 0$, d.h. u_{kink} ist eine Lösung der Euler Lagrange Gleichung $\frac{\mathrm{d}}{\mathrm{d}x} \frac{\delta H[u]}{\delta u'} = \frac{\delta H[u]}{\delta u}$.

- unter der Annahme, dass u_{kink} auch für kleine aber endliche F eine gute Beschreibung für die Flanke des Nukleus liefert. Wie sieht die Aktivierungsenergie in diesem Fall aus? Wie lässt sich die Abhängigkeit von der Dimension qualitativ verstehen?
- e)* Was ergibt sich in d=1 für die Geschwindigkeit der Schnur? Nehme dazu an, dass die Kink Dichte n im System endlich ist. Berechne n im stationären Fall durch Gleichsetzen von Erzeugungsrate ($\sim \Gamma e^{-U_a/k_BT}$) und Vernichtungsrate ($\sim rn^2$). Hierbei seien r und Γ nicht näher bestimmte Konstanten und U_a die Anregungsenergie eines Nukleus. Die Geschwindigkeit der Membran lässt sich als die Bewegung der $Kinks\ v_{kink}$ (Geschwindigkeit senkrecht zu u entlang eines Potentialtals) unter Einfluss der externen Kraft interpretieren. Wir nehmen an, dass $v_{kink} = F/\eta$ (dissipative Bewegung) gilt.

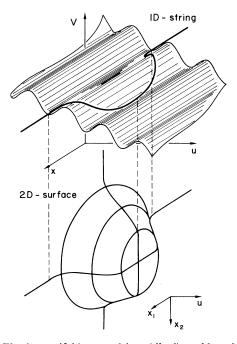


FIG. 13. Elastic manifold trapped in a (tilted) washboard potential. Top: One-dimensional elastic string with a finite segment (nucleus) activated to the next valley. The activation energy $2E_k$ involves the production of two kinks and remains always finite—the string is never in a "glassy" state. Bottom: Two-dimensional elastic surface with a finite nucleus activated to the next valley. The activation energy involves the creation of a one-dimensional (thin) wall, which costs an energy $2\pi r E_k$, where r is the radius of the nucleus. If the nucleus is large enough, $r > r_c$, it expands and the elastic manifold moves on to the next valley. The critical radius r_c increases with decreasing driving force F, $r_c = E_k / u_o F$, and the manifold shows glassy behavior with a diverging activation energy at vanishing driving force, $U(F) = \pi E_k^2 / u_o F$.

Für einen etwas tieferen Einblick in die Thematik siehe G. Blatter *et al.*, Rev. Mod. Phys. **66** 1125, (1994), M. Büttiker und R. Landauer, Phys. Rev. A **23** 1397, (1981).

Sprechstunde: Montag, 15.11.2010, 13.30 - 14.30 Uhr Jonathan Buhmann (HIT K 12.2)