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Exercise 7.1 Exact solution of the Ising chain

In this exercise we will investigate the physics of one of the few exactly solvable models, the
one-dimensional Ising model (Ising chain). Consider a chain of N + 1 Ising-spins with free ends
and nearest neighbor coupling J (J < 0 for ferromagnetic coupling)

H = J

N∑
i=1

σiσi+1 , σi = ±1 . (1)

In this exercise we will be interested in the thermodynamic limit of this system, i.e. we assume
N to be very large.

a) Compute the partition function ZN+1 using a recursive procedure.

b) Calculate the magnetization density m = 〈σj〉 where the spin σj is far away from the ends.
Which symmetries does the system exhibit? Interpret you result in terms of symmetry
arguments.

c) Show that the spin correlation function Γij = 〈σiσj〉 − 〈σi〉〈σj〉 decays exponentially with
increasing distance |j − i| on the scale of the so-called correlation length ξ, i.e. Γij ∼
e−|j−i|/ξ. Show that ξ = −[log(tanh−βJ)]−1 and interpret your result in the limit T → 0.

d) Use the fluctuation-dissipation relation in the thermodynamic limit N →∞,

χ(T )
N

=
1

kBT

∑
j

〈σ0σj〉 −N〈σ0〉2
 , (2)

to calculate the magnetic susceptibility in zero magnetic field. Here the sum over j runs
from −N/2 to N/2, where N → ∞ (for simplicity we assume N to be even). Note that
χ(T ) is defined to be extensive, such that we obtain the intensive quantity by normalization
with N , for details consider sections (3.4.5) and (3.4.6) of the lecture notes.

Exercise 7.2 The Ideal Paramagnetic Gas and the Law of Mass Action

The goal of this exercise is to understand the statistical mechanics of a mixture of ideal gases
undergoing chemical reactions. An application is an ideal gas where paramagnetic atoms may
combine to form molecules whose magnetic moment vanishes.

a) Consider a gaseous mixture of r different substances A1, . . . , Ar (e.g. A1 = H2, A2 = O2,
and A3 = H2O) that undergo s chemical reactions

να1A1 + · · ·+ ναr Ar = 0 ,

where α = 1, . . . , s and {ναi } are the stoichiometric coefficients of the reaction α (in the
above example we have s = 1 and ν1 = 2, ν2 = 1, ν3 = −2). Note that these kind of
equations allow for both directions of every chemical reaction process.

Let Ni be the number of particles of the substance Ai. Now, if the system is materially
closed the set of possible variations in the number of particles is given by

dNi =
s∑

α=1

ναi dλα ,



with independent variations dλ1, . . . ,dλs of the particle numbers according to the s reac-
tion processes. Show that, assuming constant temperature and pressure, the condition for
thermodynamic equilibrium constrains the chemicals potentials µi of the r species to obey

r∑
i=1

ναi µi = 0 ,

for each α = 1, . . . , s independently. This means that the proportions of the different
species will assume the value that corresponds to the condition of detailed balance.

b) Let each substance Ai be an ideal gas composed of particles of mass mi and with potential
energy Ei (Ei can be a binding energy of a molecule or a Zeeman energy for substances
with atomic or molecular magnetic moments). The Hamiltonian for the particles of type
Ai then reads

Hi =
Ni∑
j=1

(
~pj

2

2mi
+ Ei

)
.

Compute the grand canonical partition function Z (fixed temperature T , volume V , and
chemical potentials µi) of the system and show the law of mass action: At equilibrium
one has

r∏
i=1

〈Ni〉ν
α
i =

r∏
i=1

(
V aie

−βEi
)ναi ≡ Kα(T, V ) ,

for each α = 1, . . . , s. Here ai = (2πmikBT )3/2.

This law states that in thermodynamic equilibrium, every chemical reaction is character-
ized by a value Kα(T, V ), determined only by the stoichiometric coefficients of the reaction,
the binding energies and the mass of the particles. This value can only be changed by the
external parameters such as the temperature or the system volume but is independent of
the proportion of species in the mixture.

c) Consider now an ideal paramagnetic gas under the influence of an external magnetic field
H (see also Section 3.5.4 in the lecture notes). The particles A+ (resp. A−) of mass m have
a magnetic moment M parallel (resp. antiparallel) to the field. Furthermore, an A+ and
an A− may combine to form a single molecule A0 whose magnetic moment vanishes. The
energy released in this reaction is Eb. The second possible “reaction” is a flip A± 7→ A∓.
Use the above results to compute the relative magnetization per particle

σ = M
〈N+〉 − 〈N−〉

〈N+ +N− + 2N0〉
.

Discuss the high and low temperature limits. How do the laws of mass action read?
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