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Exercise 1) S4 in Schur-Weyl Duality

It is enough to specify the action of S4 on (C2)⊗4 on a generating set of S4. We choose the set
{π12 ⊗ id34, id1 ⊗ π23 ⊗ id4, id12 ⊗ π34}. The action of S4 on (C2)⊗4 can now be written as (in
the standard basis):

π12 ⊗ id34 7→


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⊗ 12 ⊗ 12 , id1 ⊗ π23 ⊗ id4 7→ 12 ⊗


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⊗ 12,

id12 ⊗ π34 7→ 12 ⊗ 12 ⊗


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

By the Schur transform we have

V ⊗41
∼= (V0 ⊗ C2)⊕ (V2 ⊗ C3)⊕ (V4 ⊗ C1) .

So if we decompose the representation of S4 on (C2)⊗4 into a direct sum of irreducible repre-
sentation, we know by the Schur-Weyl duality that a two-dimensional representation with mul-
tiplicity one, a three-dimensional representation with multiplicity three and a one-dimensional
representation with multiplicity five appear.

The one-dimensional representation that appears is given by the trivial representation and the
corresponding one-dimensional subspaces are given by

|a〉 := |0000〉
|b〉 := |1111〉

|c〉 :=
1

2
|0001 + 0010 + 0100 + 1000〉

|d〉 :=
1

2
|0111 + 1011 + 1101 + 1110〉

|e〉 :=
1√
6
|0011 + 0101 + 0110 + 1001 + 1010 + 1100〉 .

To specify the two-dimensional representation, we use

|f〉 := |0, 0,− + −〉 =
1√
2
|01− 10〉 ⊗ 1√

2
|01− 10〉 ≡ 1

2
|0101− 0110− 1001 + 1010〉 .

To get a second vector we note that the action of SU(2) commutes with the action of S4 and
hence we just have to apply elements π ∈ S4 to |f〉. The element (π12 ⊗ id34) just gives a minus
one, but for (id1 ⊗ π23 ⊗ id4) we get

|g′〉 := (id1 ⊗ π23 ⊗ id4)
1

2
|0101− 0110− 1001 + 1010〉 =

1

2
|0011− 0110− 1001 + 1100〉 .

This new vector |g′〉 is not orthogonal to |f〉, but using Gram-Schmidt orthonormalization we
can get such a vector:

|g〉 :=
1√
3
|0011 + 1100〉 − 1

2
√

3
|0101 + 0110 + 1001 + 1010〉 .
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The space spanned by {|f〉, |g〉} now gives the space of the two-dimensional representation. The
action in the basis {|f〉, |g〉} can be calculated to

π12 ⊗ id34 7→
(
−1 0
0 1

)
, id1 ⊗ π23 ⊗ id4 7→

(
1
2

√
3
2√

3
2 −1

2

)
, id12 ⊗ π34 7→

(
−1 0
0 1

)
.

To specify the first three-dimensional representation, we use

|h〉 := |2, 0,− + +〉 =
1√
2
|01− 10〉 ⊗ |2, 0〉 =

1√
2
|01− 10〉 ⊗ |00〉 ≡ 1√

2
|0010− 1000〉 .

Similarly as before we can get

|i〉 :=

√
2

3
|0010〉 − 1√

6
|1000 + 0100〉 ,

as well as

|j〉 :=
1

2
√

3
|0010 + 0100 + 1000〉 −

√
3

2
|0001〉 .

The space spanned by {|h〉, |i〉, |j〉} now gives the space of the first three-dimensional represen-
tation. The action in the basis {|h〉, |i〉, |j〉} can be calculated to

π12⊗id34 7→

−1 0 0
0 1 0
0 0 1

 , id1⊗π23⊗id4 7→

 1
2

√
3
2 0√

3
2 −1

2 0
0 0 1

 , id12⊗π34 7→

1 0 0

0 1
3 −2

√
2

3

0 −2
√
2

3 −1
3

 .

To specify the second three-dimensional representation, we use

|k〉 := |2, 1,− + +〉 =
1√
2
|01− 10〉 ⊗ |2, 1〉 =

1√
2
|01− 10〉 ⊗ 1√

2
|01 + 10〉

≡ 1

2
|0101 + 0110− 1010− 1001〉 .

Similarly as before we can get

|l〉 :=
1√
3
|0011− 1100〉+

1

2
√

3
|0110− 0101− 1001 + 1010〉 ,

as well as

|m〉 :=
1√
3
|0011− 1100〉 − 1

2
√

3
|0110− 0101− 1001 + 1010〉 .

The space spanned by {|k〉, |l〉, |m〉} now gives the space of the second three-dimensional repre-
sentation. The action in the basis {|k〉, |l〉, |m〉} can be calculated to

π12⊗id34 7→

−1 0 0
0 1 0
0 0 1

 , id1⊗π23⊗id4 7→

 1
2

√
3
2 0√

3
2 −1

2 0
0 0 1

 , id12⊗π34 7→

1 0 0

0 1
3 −2

√
2

3

0 −2
√
2

3 −1
3

 .

To specify the third three-dimensional representation, we use

|n〉 := |2, 2,− + +〉 =
1√
2
|01− 10〉 ⊗ |11〉 ≡ 1√

2
|0111− 1011〉 .
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Similarly as before we can get

|o〉 :=
1√
6
|0111 + 1011〉 −

√
2

3
|1101〉 ,

as well as

|p〉 :=
1

2
√

3
|0111 + 1011 + 1101〉 −

√
3

2
|1110〉 .

The space spanned by {|n〉, |o〉, |p〉} now gives the space of the third three-dimensional represen-
tation. The action in the basis {|n〉, |o〉, |p〉} can be calculated to

π12⊗id34 7→

−1 0 0
0 1 0
0 0 1

 , id1⊗π23⊗id4 7→

 1
2

√
3
2 0√

3
2 −1

2 0
0 0 1

 , id12⊗π34 7→

1 0 0

0 1
3 −2

√
2

3

0 −2
√
2

3 −1
3

 .

Exercise 2) The Sign Representation of Sn

Let {|j1〉}j1=1,2,...,n be an orthonormal basis of Cn and {|j1〉⊗ |j2〉⊗ . . .⊗ |jn〉}jk∈{1,2,...,n} be the
corresponding tensor product basis of (Cn)⊗n.

The natural action of Sn on (Cn)⊗n is given by Sn 3 π 7→ P (π) with

P (π)(|j1〉 ⊗ |j2〉 ⊗ . . .⊗ |jn〉) = |jπ−1(1)〉 ⊗ |jπ−1(2)〉 ⊗ . . .⊗ |jπ−1(n)〉 .

The decomposition of this representation into irreducible representations gives that the one-
dimensional sign representation

Sn 3 π 7→ sign(π)

appears with multiplicity one (e.g. this can be done using Schur-Weyl duality).

The corresponding one dimensional subspace is spanned by

|αn〉 =
1√
n!

∑
π∈Sn

sign(π)|jπ(1)〉 ⊗ |jπ(2)〉 ⊗ . . .⊗ |jπ(n)〉 .

This is because we have for any π̃ ∈ Sn that

P (π̃)|αn〉 =
1√
n!

∑
π∈Sn

sign(π)|jπ̃−1(π(1))〉 ⊗ |jπ̃−1(π(2))〉 ⊗ . . .⊗ |jπ̃−1(π(n))〉

=
1√
n!

∑
π̂∈Sn

sign(π̃π̂)|jπ̂(1)〉 ⊗ |jπ̂(2)〉 ⊗ . . .⊗ |jπ̂(n)〉

= sign(π̃)
1√
n!

∑
π̂∈Sn

sign(π̂)|jπ̂(1)〉 ⊗ |jπ̂(2)〉 ⊗ . . .⊗ |jπ̂(n)〉

= sign(π̃)|αn〉 ,

where we used π̂ := π̃−1π.
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