Exercise 1) Entanglement Dilution

a) As calculated in the script, the state after the Schur transform is given by

$$|\psi\rangle_{AB}^{\otimes n} = \sum_{k} c_{k} |\psi_{k}\rangle_{V_{k}^{A} \otimes V_{k}^{A}} \otimes |\phi_{m_{k}^{n}}\rangle_{[k]^{A} \otimes [k]^{B}} ,$$

where $|c_k|^2$ denotes the probability for k. Now the probability to measure P_{ϵ} can be calculated to

$$\begin{split} p_{\epsilon} &= \operatorname{tr}(|\psi\rangle\langle\psi|_{AB}^{\otimes n}P_{\epsilon}) = \operatorname{tr}(\rho_{A}^{\otimes n}P_{\epsilon}) = \operatorname{tr}(\rho_{A}^{\otimes n}(\sum_{k\in K}|k\rangle\langle k|)) = \sum_{k\in K}\operatorname{tr}(\rho_{A}^{\otimes n}|k\rangle\langle k|) \\ &= \sum_{k\in K}|c_{k}|^{2} = 1 - \sum_{k\notin K}|c_{k}|^{2} \ . \end{split}$$

where $K = n[1 - 2r - 2\epsilon, 1 - 2r + 2\epsilon]$. We continue with (cf. script page 24)

$$\sum_{k \notin K} |c_k|^2 = \sum_{k \notin K} \binom{n}{\frac{n-k}{2}} r^{\frac{n-k}{2}} (1-r)^{\frac{n+k}{2}} (\frac{2k+2}{n+k+2} \cdot \frac{1-r}{1-2r})$$

$$\leq \frac{1-r}{1-2r} \cdot \sum_{k \notin K} \binom{n}{\frac{n-k}{2}} r^{\frac{n-k}{2}} (1-r)^{\frac{n+k}{2}}$$

$$= \frac{1-r}{1-2r} \cdot \sum_{j \notin J} \binom{n}{j} r^j (1-r)^{n-j}$$

$$= \frac{1-r}{1-2r} \cdot (1-\sum_{j \in J} \binom{n}{j} r^j (1-r)^{n-j}) ,$$

where $j = \frac{n-k}{2}$ and $J = n[r + \epsilon, r - \epsilon]$. But by the law of large numbers we have

$$\lim_{n \to \infty} \left(\sum_{j \in J} \binom{n}{j} r^j (1-r)^{n-j} \right) = 1 ,$$

which let's us conclude that $p_{\epsilon} \to 1$ for $n \to \infty$.

(b) A twice-differentiable function f(t) is concave if f''(t) < 0. For $f(t) = -t \log t$ we get $f''(t) = -\frac{1}{t}$, which is indeed smaller than zero for all t > 0.

Now define $g_s(t) = f(t+s) - f(t)$ for $s \in [0, \frac{1}{2}]$ and note that $g'_s(t) \leq 0$ for all $s \geq 0$. Hence we have for $t \in [0, 1-s]$ that

$$|g_s(t)| \le \max\{g_s(0), g_s(1-s)\},\$$

which is equivalent to

 $|f(t) - f(t+s)| \le \max\{f(s), f(1-s)\}$.

Furthermore we find that $f(1-s) \leq f(s)$ and hence $|f(t) - f(t+s)| \leq f(s)$.

Finally this gives us

$$|h(x) - h(x+\epsilon)| \le |f(x) - f(x+\epsilon)| + |f(1-x) - f(1-x-\epsilon)|$$

$$\le f(\epsilon) + f(\epsilon) = -2\epsilon \log \epsilon .$$
(1)
(2)

The number of path ebits is given by $\log m_k^n$, and as shown on page 18 of the script we have

$$nh(\frac{1}{2}(1-\frac{k}{n})) - 2\log(n+1) \le \log m_k^n \le nh(\frac{1}{2}(1-\frac{k}{n}))$$
.

15. November 2010

By a) we know that $k \in n[1 - 2r - 2\epsilon, 1 - 2r + 2\epsilon]$, which gives us

$$nh(r+\epsilon) - 2\log(n+1) \le \log m_k^n \le nh(r+\epsilon)$$
.

Using (2) we can conclude that

$$n(h(r) + 2\epsilon \log \epsilon) - 2\log(n+1) \le \log m_k^n \le n(h(r) - 2\epsilon \log \epsilon)$$
.

c) The protocol needs entanglment to exchange the path ebits against ebits shared with Bob and to teleport all the remaining outputs from the Schur transform on the B systems to Bob.

For the first task we know from a) that between $n(h(r) + 2\epsilon \log \epsilon) - 2\log(n+1)$ and $n(h(r) - 2\epsilon \log \epsilon)$ are needed. For the second task we need to teleport the remaining p registers, the l' register and the k register, for which we need

$$4n\epsilon\log\epsilon + 2\log(n+1) + 2\log n$$

ebits.

The classical communication needed comes from the teleportation step and hence we need

$$8n\epsilon\log\epsilon + 4\log(n+1) + 4\log n$$

bits of classical communication.

Exercise 2) Schmidt Coefficients

a) *n* ebits can be written as $|\psi\rangle_{AB}^{\otimes n} = (\frac{1}{\sqrt{2}}(|00\rangle_{AB} + |11\rangle_{AB}))^{\otimes n}$ and the local density matrices become $\psi_A^n = \psi_B^n = \frac{1}{\sqrt{2^n}} \cdot \mathbb{1}_{2^n}$. The number of non-zero Schmidt coefficients is then equal to the rank of $\frac{1}{\sqrt{2^n}} \cdot \mathbb{1}_{2^n}$, which is given by 2^n .

b) Let $|\Psi'\rangle_{AB} = (P_A \otimes \mathbb{1}_B)|\Psi\rangle_{AB}$ be the (non-normalised) state after a local projection on Alice's side. Since the Schmidt coefficients are just the square roots of the eigenvalues of the local density matrix we find

$$\operatorname{rank}(\operatorname{tr}_B(|\Psi'\rangle\langle\Psi'|_{AB})) = \operatorname{rank}(\operatorname{tr}_B((P_A \otimes \mathbb{1}_B)|\Psi\rangle\langle\Psi|_{AB}(P_A \otimes \mathbb{1}_B)))$$
$$= \operatorname{rank}(P_A(\operatorname{tr}_B(|\Psi\rangle\langle\Psi|_{AB}))P_A) .$$

Set $r := \operatorname{rank}(\operatorname{tr}_B(|\Psi\rangle\langle\Psi|_{AB}))$ and let $\operatorname{tr}_B(|\Psi\rangle\langle\Psi|_{AB}) = \sum_{i=1}^r \lambda_i |v_i\rangle\langle v_i|_A$ be an eigendecomposition. Then $P_A(\operatorname{tr}_B(|\Psi\rangle\langle\Psi|_{AB}))P_A = \sum_{i=1}^r \lambda_i |v_i'\rangle\langle v_i'|_A$ for $|v_i'\rangle_A = P_A|v_i\rangle_A$, and hence

 $\operatorname{rank}(P_A(\operatorname{tr}_B|\Psi\rangle\langle\Psi|_{AB})P_A) \leq \operatorname{rank}(\operatorname{tr}_B(|\Psi\rangle\langle\Psi|_{AB})) .$