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Exercise 1) Entanglement Dilution

a) As calculated in the script, the state after the Schur transform is given by

|ψ〉⊗nAB =
∑
k

ck|ψk〉V A
k ⊗V

A
k
⊗ |φmn

k
〉[k]A⊗[k]B ,

where |ck|2 denotes the probability for k. Now the probability to measure Pε can be calculated
to

pε = tr(|ψ〉〈ψ|⊗nABPε) = tr(ρ⊗nA Pε) = tr(ρ⊗nA (
∑
k∈K
|k〉〈k|)) =

∑
k∈K

tr(ρ⊗nA |k〉〈k|)

=
∑
k∈K
|ck|2 = 1−

∑
k/∈K

|ck|2 .

where K = n[1− 2r − 2ε, 1− 2r + 2ε]. We continue with (cf. script page 24)∑
k/∈K

|ck|2 =
∑
k/∈K

(
n
n−k
2

)
r

n−k
2 (1− r)

n+k
2 (

2k + 2

n+ k + 2
· 1− r

1− 2r
)

≤ 1− r
1− 2r

·
∑
k/∈K

(
n
n−k
2

)
r

n−k
2 (1− r)

n+k
2

=
1− r
1− 2r

·
∑
j /∈J

(
n

j

)
rj(1− r)n−j

=
1− r
1− 2r

· (1−
∑
j∈J

(
n

j

)
rj(1− r)n−j) ,

where j = n−k
2 and J = n[r + ε, r − ε]. But by the law of large numbers we have

lim
n→∞

(
∑
j∈J

(
n

j

)
rj(1− r)n−j) = 1 ,

which let’s us conclude that pε → 1 for n→∞.

(b) A twice-differentiable function f(t) is concave if f ′′(t) < 0. For f(t) = −t log t we get
f ′′(t) = −1

t , which is indeed smaller than zero for all t > 0.

Now define gs(t) = f(t+ s)− f(t) for s ∈ [0, 12 ] and note that g′s(t) ≤ 0 for all s ≥ 0. Hence we
have for t ∈ [0, 1− s] that

|gs(t)| ≤ max{gs(0), gs(1− s)} ,

which is equivalent to
|f(t)− f(t+ s)| ≤ max{f(s), f(1− s)} .

Furthermore we find that f(1− s) ≤ f(s) and hence |f(t)− f(t+ s)| ≤ f(s).

Finally this gives us

|h(x)− h(x+ ε)| ≤ |f(x)− f(x+ ε)|+ |f(1− x)− f(1− x− ε)| (1)

≤ f(ε) + f(ε) = −2ε log ε . (2)

The number of path ebits is given by logmn
k , and as shown on page 18 of the script we have

nh(
1

2
(1− k

n
))− 2 log(n+ 1) ≤ logmn

k ≤ nh(
1

2
(1− k

n
)) .
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By a) we know that k ∈ n[1− 2r − 2ε, 1− 2r + 2ε], which gives us

nh(r + ε)− 2 log(n+ 1) ≤ logmn
k ≤ nh(r + ε) .

Using (2) we can conclude that

n(h(r) + 2ε log ε)− 2 log(n+ 1) ≤ logmn
k ≤ n(h(r)− 2ε log ε) .

c) The protocol needs entanglment to exchange the path ebits against ebits shared with Bob
and to teleport all the remaining outputs from the Schur transform on the B systems to Bob.

For the first task we know from a) that between n(h(r) + 2ε log ε) − 2 log(n + 1) and n(h(r) −
2ε log ε) are needed. For the second task we need to teleport the remaining p registers, the l′

register and the k register, for which we need

4nε log ε+ 2 log(n+ 1) + 2 log n

ebits.

The classical communication needed comes from the teleportation step and hence we need

8nε log ε+ 4 log(n+ 1) + 4 log n

bits of classical communication.

Exercise 2) Schmidt Coefficients

a) n ebits can be written as |ψ〉⊗nAB = ( 1√
2
(|00〉AB + |11〉AB))⊗n and the local density matrices

become ψnA = ψnB = 1√
2n
· 12n . The number of non-zero Schmidt coefficients is then equal to the

rank of 1√
2n
· 12n , which is given by 2n.

b) Let |Ψ′〉AB = (PA ⊗ 1B)|Ψ〉AB be the (non-normalised) state after a local projection on
Alice’s side. Since the Schmidt coefficients are just the square roots of the eigenvalues of the
local density matrix we find

rank(trB(|Ψ′〉〈Ψ′|AB)) = rank(trB((PA ⊗ 1B)|Ψ〉〈Ψ|AB(PA ⊗ 1B)))

= rank(PA(trB(|Ψ〉〈Ψ|AB))PA) .

Set r := rank(trB(|Ψ〉〈Ψ|AB)) and let trB(|Ψ〉〈Ψ|AB) =
∑r

i=1 λi|vi〉〈vi|A be an eigendecomposi-
tion. Then PA(trB(|Ψ〉〈Ψ|AB))PA =

∑r
i=1 λi|v′i〉〈v′i|A for |v′i〉A = PA|vi〉A, and hence

rank(PA(trB|Ψ〉〈Ψ|AB)PA) ≤ rank(trB(|Ψ〉〈Ψ|AB)) .
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