Exercise 1) Entanglement Dilution

a) As calculated in the script, the state after the Schur transform is given by

$$
|\psi\rangle_{A B}^{\otimes n}=\sum_{k} c_{k}\left|\psi_{k}\right\rangle_{V_{k}^{A} \otimes V_{k}^{A}} \otimes\left|\phi_{m_{k}^{n}}\right\rangle_{[k]^{A} \otimes[k]^{B}}
$$

where $\left|c_{k}\right|^{2}$ denotes the probability for k. Now the probability to measure P_{ϵ} can be calculated to

$$
\begin{aligned}
p_{\epsilon} & =\operatorname{tr}\left(|\psi\rangle\left\langle\left.\psi\right|_{A B} ^{\otimes n} P_{\epsilon}\right)=\operatorname{tr}\left(\rho_{A}^{\otimes n} P_{\epsilon}\right)=\operatorname{tr}\left(\rho_{A}^{\otimes n}\left(\sum_{k \in K}|k\rangle\langle k|\right)\right)=\sum_{k \in K} \operatorname{tr}\left(\rho_{A}^{\otimes n}|k\rangle\langle k|\right)\right. \\
& =\sum_{k \in K}\left|c_{k}\right|^{2}=1-\sum_{k \notin K}\left|c_{k}\right|^{2} .
\end{aligned}
$$

where $K=n[1-2 r-2 \epsilon, 1-2 r+2 \epsilon]$. We continue with (cf. script page 24)

$$
\begin{aligned}
\sum_{k \notin K}\left|c_{k}\right|^{2} & =\sum_{k \notin K}\binom{n}{\frac{n-k}{2}} r^{\frac{n-k}{2}}(1-r)^{\frac{n+k}{2}}\left(\frac{2 k+2}{n+k+2} \cdot \frac{1-r}{1-2 r}\right) \\
& \leq \frac{1-r}{1-2 r} \cdot \sum_{k \notin K}\binom{n}{\frac{n-k}{2}} r^{\frac{n-k}{2}}(1-r)^{\frac{n+k}{2}} \\
& =\frac{1-r}{1-2 r} \cdot \sum_{j \notin J}\binom{n}{j} r^{j}(1-r)^{n-j} \\
& =\frac{1-r}{1-2 r} \cdot\left(1-\sum_{j \in J}\binom{n}{j} r^{j}(1-r)^{n-j}\right)
\end{aligned}
$$

where $j=\frac{n-k}{2}$ and $J=n[r+\epsilon, r-\epsilon]$. But by the law of large numbers we have

$$
\lim _{n \rightarrow \infty}\left(\sum_{j \in J}\binom{n}{j} r^{j}(1-r)^{n-j}\right)=1
$$

which let's us conclude that $p_{\epsilon} \rightarrow 1$ for $n \rightarrow \infty$.
(b) A twice-differentiable function $f(t)$ is concave if $f^{\prime \prime}(t)<0$. For $f(t)=-t \log t$ we get $f^{\prime \prime}(t)=-\frac{1}{t}$, which is indeed smaller than zero for all $t>0$.

Now define $g_{s}(t)=f(t+s)-f(t)$ for $s \in\left[0, \frac{1}{2}\right]$ and note that $g_{s}^{\prime}(t) \leq 0$ for all $s \geq 0$. Hence we have for $t \in[0,1-s]$ that

$$
\left|g_{s}(t)\right| \leq \max \left\{g_{s}(0), g_{s}(1-s)\right\}
$$

which is equivalent to

$$
|f(t)-f(t+s)| \leq \max \{f(s), f(1-s)\}
$$

Furthermore we find that $f(1-s) \leq f(s)$ and hence $|f(t)-f(t+s)| \leq f(s)$.
Finally this gives us

$$
\begin{align*}
|h(x)-h(x+\epsilon)| & \leq|f(x)-f(x+\epsilon)|+|f(1-x)-f(1-x-\epsilon)| \tag{1}\\
& \leq f(\epsilon)+f(\epsilon)=-2 \epsilon \log \epsilon \tag{2}
\end{align*}
$$

The number of path ebits is given by $\log m_{k}^{n}$, and as shown on page 18 of the script we have

$$
n h\left(\frac{1}{2}\left(1-\frac{k}{n}\right)\right)-2 \log (n+1) \leq \log m_{k}^{n} \leq n h\left(\frac{1}{2}\left(1-\frac{k}{n}\right)\right)
$$

By a) we know that $k \in n[1-2 r-2 \epsilon, 1-2 r+2 \epsilon]$, which gives us

$$
n h(r+\epsilon)-2 \log (n+1) \leq \log m_{k}^{n} \leq n h(r+\epsilon)
$$

Using (2) we can conclude that

$$
n(h(r)+2 \epsilon \log \epsilon)-2 \log (n+1) \leq \log m_{k}^{n} \leq n(h(r)-2 \epsilon \log \epsilon)
$$

c) The protocol needs entanglment to exchange the path ebits against ebits shared with Bob and to teleport all the remaining outputs from the Schur transform on the B systems to Bob.

For the first task we know from a) that between $n(h(r)+2 \epsilon \log \epsilon)-2 \log (n+1)$ and $n(h(r)-$ $2 \epsilon \log \epsilon$) are needed. For the second task we need to teleport the remaining p registers, the l^{\prime} register and the k register, for which we need

$$
4 n \epsilon \log \epsilon+2 \log (n+1)+2 \log n
$$

ebits.
The classical communication needed comes from the teleportation step and hence we need

$$
8 n \epsilon \log \epsilon+4 \log (n+1)+4 \log n
$$

bits of classical communication.

Exercise 2) Schmidt Coefficients

a) n ebits can be written as $|\psi\rangle_{A B}^{\otimes n}=\left(\frac{1}{\sqrt{2}}\left(|00\rangle_{A B}+|11\rangle_{A B}\right)\right)^{\otimes n}$ and the local density matrices become $\psi_{A}^{n}=\psi_{B}^{n}=\frac{1}{\sqrt{2^{n}}} \cdot \mathbb{1}_{2^{n}}$. The number of non-zero Schmidt coefficients is then equal to the rank of $\frac{1}{\sqrt{2^{n}}} \cdot \mathbb{1}_{2^{n}}$, which is given by 2^{n}.
b) Let $\left|\Psi^{\prime}\right\rangle_{A B}=\left(P_{A} \otimes \mathbb{1}_{B}\right)|\Psi\rangle_{A B}$ be the (non-normalised) state after a local projection on Alice's side. Since the Schmidt coefficients are just the square roots of the eigenvalues of the local density matrix we find

$$
\begin{aligned}
\operatorname{rank}\left(\operatorname{tr}_{B}\left(\left|\Psi^{\prime}\right\rangle\left\langle\left.\Psi^{\prime}\right|_{A B}\right)\right)\right. & =\operatorname{rank}\left(\operatorname{tr}_{B}\left(\left(P_{A} \otimes \mathbb{1}_{B}\right)|\Psi\rangle\left\langle\left.\Psi\right|_{A B}\left(P_{A} \otimes \mathbb{1}_{B}\right)\right)\right)\right. \\
& =\operatorname{rank}\left(P_{A}\left(\operatorname{tr}_{B}\left(|\Psi\rangle\left\langle\left.\Psi\right|_{A B}\right)\right) P_{A}\right)\right.
\end{aligned}
$$

Set $r:=\operatorname{rank}\left(\operatorname{tr}_{B}\left(|\Psi\rangle\left\langle\left.\Psi\right|_{A B}\right)\right)\right.$ and let $\operatorname{tr}_{B}\left(|\Psi\rangle\left\langle\left.\Psi\right|_{A B}\right)=\sum_{i=1}^{r} \lambda_{i}\left|v_{i}\right\rangle\left\langle\left. v_{i}\right|_{A}\right.\right.$ be an eigendecomposition. Then $P_{A}\left(\operatorname{tr}_{B}\left(|\Psi\rangle\left\langle\left.\Psi\right|_{A B}\right)\right) P_{A}=\sum_{i=1}^{r} \lambda_{i}\left|v_{i}^{\prime}\right\rangle\left\langle\left. v_{i}^{\prime}\right|_{A} \text { for } \mid v_{i}^{\prime}\right\rangle_{A}=P_{A}\left|v_{i}\right\rangle_{A}\right.$, and hence

$$
\operatorname{rank}\left(P_{A}\left(\operatorname{tr}_{B}|\Psi\rangle\left\langle\left.\Psi\right|_{A B}\right) P_{A}\right) \leq \operatorname{rank}\left(\operatorname{tr}_{B}\left(|\Psi\rangle\left\langle\left.\Psi\right|_{A B}\right)\right)\right.\right.
$$

