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Exercise 1) Entanglement Dilution

a) As calculated in the script, the state after the Schur transform is given by

[)ap = ch‘wk vaevA @ ldmp) ks

where |cx|? denotes the probability for k. Now the probability to measure P. can be calculated
to

pe = tr([O)(WIFEP) = tr(pF" Pe) = te(pF" (Y [k)(KD) = Y tr(p3" k) (k)
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where K = n[l — 2r — 2¢,1 — 2r + 2¢]. We continue with (cf. script page 24)
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where j = "—gk and J = n[r + ¢,r — €]. But by the law of large numbers we have
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which let’s us conclude that p. — 1 for n — oo.

(b) A twice-differentiable function f(t) is concave if f”(t) < 0. For f(t) = —tlogt we get
f(t) = —1, which is indeed smaller than zero for all ¢ > 0.

Now define g,(t) = f(t + s) — f(t) for s € [0, 3] and note that g/(t) <0 for all s > 0. Hence we
have for ¢ € [0,1 — s] that

|gs(t)’ < max{gs(0)795<1 - S)} )
which is equivalent to
|f(t) = f(t+s)] < max{f(s), f(1—s)} .
Furthermore we find that f(1 —s) < f(s) and hence |f(t) — f(t + s)| < f(s).

Finally this gives us

|h(z) = h(z +e)| < |f(z) = flz+ )| +|f(1—2)— f(1 -2 —¢) (1)
< f(e) + f(e) = —2¢loge . (2)

The number of path ebits is given by logm}!, and as shown on page 18 of the script we have

nh(%(l - %)) —2log(n+1) <logmj < nh(é(l - %)) .
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By a) we know that k£ € n[l — 2r — 2¢,1 — 2r + 2¢|, which gives us
nh(r +¢€) —2log(n + 1) <logmy < nh(r +e€) .
Using (2) we can conclude that
n(h(r) + 2eloge) — 2log(n + 1) < logmj < n(h(r) — 2¢eloge) .
c) The protocol needs entanglment to exchange the path ebits against ebits shared with Bob
and to teleport all the remaining outputs from the Schur transform on the B systems to Bob.

For the first task we know from a) that between n(h(r) + 2eloge) — 2log(n + 1) and n(h(r) —
2eloge) are needed. For the second task we need to teleport the remaining p registers, the I’
register and the k register, for which we need

4neloge + 2log(n + 1) + 2logn

ebits.

The classical communication needed comes from the teleportation step and hence we need
8neloge + 4log(n + 1) + 4logn

bits of classical communication.

Exercise 2) Schmidt Coefficients

a) n ebits can be written as [¢)5} = (%(!OO}AB +[11) 4p))®" and the local density matrices

become Y} = Y = \/127 - I9n. The number of non-zero Schmidt coefficients is then equal to the

rank of ﬁ - 1on, which is given by 2".

b) Let |¥')ap = (P4 ® 15)|¥)ap be the (non-normalised) state after a local projection on
Alice’s side. Since the Schmidt coefficients are just the square roots of the eigenvalues of the
local density matrix we find

rank(trp (|9 ) (¥'|ap)) = rank(trp((Pa ® 15)|¥)(¥|ap(Ps @ 15)))
= rank (P4 (trp(|U)(¥|45))Pa) .

Set r := rank(trp(|¥)(¥|ap)) and let trp(|U)(¥|ap) = > ;_; \ilvi){vi|a be an eigendecomposi-
tion. Then Pa(trp(|U)(W]|ap))Pa = > iy Xilv})(vi|a for |v]) a4 = Palv;)a, and hence

rank(Pa (trg|¥) (V| ap)Pa) < rank(trp(|U)(¥|aB)) -
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