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Exercise 1) Clebsch-Gordan Coefficients

a) By the Schur transform we have

V ⊗n1 =
⊕
k

Vk ⊗ Cmn
k ,

where mn
k =

( n
n−k
2

)
· 2k+2
n+k+2 . For n = k we get mk

k = 1 and hence Vk is a sub-representation of

V ⊗k1 that appears with multiplicity one.

Because the weight of the vectors is additive we need to have l ones and therefore k − l zeros
for the vector |k, l〉. Furthermore, since the action of SU(2) and Sk commute, we have

|k, l〉 ∝ | 11 . . . 1︸ ︷︷ ︸
l

00 . . . 0︸ ︷︷ ︸
k−l

〉+ perm .

Since |k, l〉 has to be normalized to one, we can conclude

|k, l〉 =
1√(
k
l

)
| 11 . . . 1︸ ︷︷ ︸

l

00 . . . 0︸ ︷︷ ︸
k−l

〉+ perm

 .

b) The weight of the state on the LHS is given by 2 · l− (k+1) = 2l−k−1 and the weight of the
states on the RHS is given by 2 · l1 +2 ·1−k−1 = 2l1−k+1 and 2 · l2 +2 ·0−k−1 = 2l2−k−1
resp. Since the states on the RHS have the same weight as the state on the LHS we get l1 = l−1
and l2 = l.

Using the formula found in a) we can write the state on the RHS as

|k + 1, l〉 =
1√(
k+1
l

)
| 11 . . . 1︸ ︷︷ ︸

l

00 . . . 0︸ ︷︷ ︸
k+1−l

〉+ perm

 ,

and the first state on the LHS as

|k, l − 1〉 ⊗ |1, 1〉 =
1√(
k

l−1
)
| 11 . . . 1︸ ︷︷ ︸

l−1

00 . . . 0︸ ︷︷ ︸
k−l+1

〉+ perm

⊗ |1〉 .
Hence we can get

c1 = 〈k + 1, l|(|k, l − 1〉 ⊗ |1, 1〉)

=
1√(

k+1
l

)
·
(

k
l−1
)(〈11 . . . 1︸ ︷︷ ︸

l

00 . . . 0︸ ︷︷ ︸
k+1−l

|+ perm)((| 11 . . . 1︸ ︷︷ ︸
l−1

00 . . . 0︸ ︷︷ ︸
k−l+1

〉+ perm)⊗ |1〉)

=

(
k

l−1
)√(

k+1
l

)
·
(

k
l−1
) =

√
l

k + 1
.

By similar arguments (or just normalization) we can also get c2 =
√

k−l+1
k+1 .

So we can conclude that

|k + 1, l〉 =

√
l

k + 1
|k, l − 1〉 ⊗ |1, 1〉+

√
k − l + 1

k + 1
|k, l〉 ⊗ |1, 0〉 .
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c) By the orthogonality of |k − 1, l − 1〉 and |k + 1, l〉 and using the same phase convention as
in the script we can get

|k − 1, l − 1〉 = −
√
k + 1− l
k + 1

|k, l − 1〉 ⊗ |1, 1〉+

√
l

k + 1
|k, l〉 ⊗ |1, 0〉 .

Exercise 2) Representations of the Symmetric Group

a) The action of S2 on (C2)⊗2 can be written as (in the standard basis):

id12 7→


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , π12 7→


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

By the Schur transform we have

V1 ⊗ V1 ∼= (V0 ⊗ C1)⊕ (V2 ⊗ C1) .

So if we decompose the representation of S2 on (C2)⊗2 into a direct sum of irreducible repre-
sentation, we know by the Schur-Weyl duality that two one-dimensional representations appear,
one with multiplicity one and one with multiplicity three.

We can diagonalize the matrix that corresponds to π12 and get the eigenvalues (1, 1, 1,−1) with
corresponding eigenvectors |a〉 := |00〉, |b〉 := |11〉, |c〉 := 1√

2
|01 + 10〉 and |d〉 := 1√

2
|01− 10〉.

Hence on the subspace spanned by |a〉 the action of S2 is trivial and the same happens on the
subspace spanned by |b〉 and the subspace spanned by |c〉. On the subspace spanned by |d〉 the
action of S2 is given by

id12 7→ 1, π12 7→ −1 ,

the alternating representation.

So the one-dimensional trivial representation appears with multiplicity three and the one-
dimensional alternating representation appears with multiplicity one.

b) It is enough to specify the action of S3 on (C2)⊗3 on a generating set of S3. We choose the
set {π12 ⊗ id3, id1 ⊗ π23}. The action of S3 on (C2)⊗3 can now be written as (in the standard
basis):

π12 ⊗ id3 7→


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⊗ 12 , id1 ⊗ π23 7→ 12 ⊗


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

By the Schur transform we have

V ⊗31
∼= (V1 ⊗ C2)⊕ (V3 ⊗ C1) .

So if we decompose the representation of S3 on (C2)⊗3 into a direct sum of irreducible representa-
tion, we know by the Schur-Weyl duality that a one-dimensional representation with multiplicity
four and a two-dimensional representation with multiplicity two appear.
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The one-dimensional representation that appears is given by the trivial representation and the
corresponding one-dimensional subspaces are given by: |a〉 := |000〉, |b〉 := |111〉, |c〉 := 1√

3
|001+

010 + 100〉 and |d〉 := 1√
3
|011 + 101 + 110〉.

To specify the first two-dimensional representation, we use

|e〉 := |1, 0,− +〉 =
1√
2
|01− 10〉 ⊗ |0〉 ≡ 1√

2
|010− 100〉 ,

as on pages 20-21 in the script. To get a second vector we note that the action of SU(2)
commutes with the action of S3 and hence for any π ∈ S3: π|1, 0,− +〉 =

∑
p cp|1, 0, p〉. The

element π12 ⊗ id2 just gives a minus one, but for id1 ⊗ π23 we get

|f ′〉 := (id1 ⊗ π23)
1√
2
|010− 100〉 =

1√
2
|001− 100〉 .

This new vector |f ′〉 is not orthogonal to |e〉, but using Gram-Schmidt orthonormalization we
can get such a vector:

|f〉 :=

√
2

3
|001〉 − 1√

6
|010〉 − 1√

6
|100〉 .

The space spanned by {|e〉, |f〉} now gives the space of the first two dimensional representation.
The action in the basis {|e〉, |f〉} can be calculated to

id1 ⊗ π23 7→

(
1
2

√
3
2√

3
2 −1

2

)
, π12 ⊗ id3 7→

(
−1 0
0 1

)
.

To specify the second two-dimensional representation, we use

|g〉 := |1, 1,− +〉 =
1√
2
|01− 10〉 ⊗ |1〉 ≡ 1√

2
|011− 101〉 .

Similarly as before we can get

|h′〉 := (id1 ⊗ π23)
1√
2
|011− 101〉 =

1√
2
|011− 110〉 .

as well as

|h〉 :=
1√
6
|011〉+

1√
6
|101〉 −

√
2

3
|110〉 .

The space spanned by {|g〉, |h〉} now gives the space of the second two dimensional representation.
The action in the basis {|g〉, |h〉} can be calculated to

id1 ⊗ π23 7→

(
1
2

√
3
2√

3
2 −1

2

)
, π12 ⊗ id3 7→

(
−1 0
0 1

)
,

the same matrices as before (as it should be since the same two-dimensional representation
appears two times).
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