Symmetries in Quantum Information Theory Prof. Matthias Christandl, Mario Berta
Sample Solution 6 ETH Zurich, HS 2010

Exercise 1) Clebsch-Gordan Coefficients
a) By the Schur transform we have

:@Vk@)CmZ,
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V1®k that appears with multiplicity one.

where mJ! = (") - For n = k we get mf = 1 and hence V}, is a sub-representation of
2

Because the weight of the vectors is additive we need to have [ ones and therefore k — [ zeros
for the vector |k, ). Furthermore, since the action of SU(2) and Sj commute, we have

|k, 1) o< |11 .l. . 100k. .l. 0) + perm .

Since |k, ) has to be normalized to one, we can conclude

|kal> =

(k:) |11 .l. 1 O()k. .l. 0) + perm
; ”

b) The weight of the state on the LHS is given by 2-1— (k+1) = 2/ — k— 1 and the weight of the
states on the RHS is given by 2-1; +2-1—k—1=2l1 —k+1and 2-lo0+2-0—k—1=2lb—k—1
resp. Since the states on the RHS have the same weight as the state on the LHS we get [y =1—1
and Iy = 1.

Using the formula found in a) we can write the state on the RHS as

|k +1,1) =
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Hence we can get

:A44444144444(<11... 0|+ perm)((|11...100. . .0) + perm) @ |1))
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By similar arguments (or just normalization) we can also get co = e

So we can conclude that

F_i+1
k10 =/ k- D L1 + 4Eii4kw®uo>
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c) By the orthogonality of |k — 1,/ — 1) and |k 4 1,1) and using the same phase convention as
in the script we can get

k+1-—
k—1,1—-1 k,l— 1,1) k1) ®|1,0)
L= = A e e )+ k) e

Exercise 2) Representations of the Symmetric Group

a) The action of Sy on (C?)®2 can be written as (in the standard basis):

1 000 1 000
idgs 0100 1 0010
001 0] 0100
0 001 00 01

By the Schur transform we have
VieVi2(heChe (heCh.

So if we decompose the representation of S on (C?)®? into a direct sum of irreducible repre-
sentation, we know by the Schur-Weyl duality that two one-dimensional representations appear,
one with multiplicity one and one with multiplicity three.

We can diagonalize the matrix that corresponds to w12 and get the eigenvalues (1, 1, —1) with
corresponding eigenvectors |a) := |00), |b) := |11), |c) := \/5|01 +10) and |d) := \ —10).
Hence on the subspace spanned by |a) the action of Sy is trivial and the same happens on the
subspace spanned by |b) and the subspace spanned by |c). On the subspace spanned by |d) the
action of Sy is given by

idijo = 1, Mo — —1,

the alternating representation.

So the one-dimensional trivial representation appears with multiplicity three and the one-
dimensional alternating representation appears with multiplicity one.

b) It is enough to specify the action of S5 on (C?)®3 on a generating set of S3. We choose the
set {m12 ® id3,id; ® ma3}. The action of S3 on (C2)®3 can now be written as (in the standard
basis):

T2 ® idg — ® 1y ,id] ® T3 — 1o ®

o= O O
— o O O
O = O O
O O = O
— o O O

0 1
1 0
0 0
0 0

o O O

By the Schur transform we have
VP2 Viet)e(zecC.

So if we decompose the representation of S3 on (C2)®3 into a direct sum of irreducible representa-
tion, we know by the Schur-Weyl duality that a one-dimensional representation with multiplicity
four and a two-dimensional representation with multiplicity two appear.
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The one-dimensional representation that appears is given by the trivial representation and the
corresponding one-dimensional subspaces are given by: |a) := [000), |b) := |111), |c) := %]0014—

010 + 100) and |d) := %mu + 101 + 110).

To specify the first two-dimensional representation, we use

1 1
V2 V2

as on pages 20-21 in the script. To get a second vector we note that the action of SU(2)

commutes with the action of S3 and hence for any 7 € S3: 7[1,0,— +) = > ¢[1,0,p). The
element w15 ® ids just gives a minus one, but for id; ® o3 we get

le) :=|1,0, — +) 01 —10) ® |0) = —[010 — 100) ,

[f) == (id1 ® 723) —100) = 1—100) .

1 1
—1010 —|00
V3 vl
This new vector |f’) is not orthogonal to |e), but using Gram-Schmidt orthonormalization we
can get such a vector:

2 1 1
If) = \/;|001> - %|010> - %\100) .

The space spanned by {|e), |f)} now gives the space of the first two dimensional representation.
The action in the basis {|e),|f)} can be calculated to

1 V3 —-1 0
id] ® o3 > \% 21 ,7712®id3r—>(0 1) .
2 T2

To specify the second two-dimensional representation, we use

1

‘g> ::‘1717_+> \/i

1
01-10) ® 1) = {011 — 101) .

Similarly as before we can get
1
V2

1

|h/> = (idl & 71’23) \/§

011 — 101) = —|011 — 110) .

as well as
) = —=[011) + ——[101) — \me
Ve V6 3 '

The space spanned by {|g), |h)} now gives the space of the second two dimensional representation.
The action in the basis {|g), |h)} can be calculated to

1 V3 1 0
id| ® o3 > \;g 21 ,7T12®id3i—><0 1) ,
2 2

the same matrices as before (as it should be since the same two-dimensional representation
appears two times).
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