Exercise 1) Clebsch-Gordan Coefficients

a) By the Schur transform we have

$$
V_{1}^{\otimes n}=\bigoplus_{k} V_{k} \otimes \mathbb{C}^{m_{k}^{n}}
$$

where $m_{k}^{n}=\binom{n}{\frac{n-k}{2}} \cdot \frac{2 k+2}{n+k+2}$. For $n=k$ we get $m_{k}^{k}=1$ and hence V_{k} is a sub-representation of $V_{1}^{\otimes k}$ that appears with multiplicity one.

Because the weight of the vectors is additive we need to have l ones and therefore $k-l$ zeros for the vector $|k, l\rangle$. Furthermore, since the action of $S U(2)$ and S_{k} commute, we have

$$
|k, l\rangle \propto|\underbrace{11 \ldots 1}_{l} \underbrace{00 \ldots 0}_{k-l}\rangle+\operatorname{perm} .
$$

Since $|k, l\rangle$ has to be normalized to one, we can conclude

$$
|k, l\rangle=\frac{1}{\sqrt{\binom{k}{l}}}(|\underbrace{11 \ldots 1}_{l} \underbrace{00 \ldots 0}_{k-l}\rangle+\text { perm })
$$

b) The weight of the state on the LHS is given by $2 \cdot l-(k+1)=2 l-k-1$ and the weight of the states on the RHS is given by $2 \cdot l_{1}+2 \cdot 1-k-1=2 l_{1}-k+1$ and $2 \cdot l_{2}+2 \cdot 0-k-1=2 l_{2}-k-1$ resp. Since the states on the RHS have the same weight as the state on the LHS we get $l_{1}=l-1$ and $l_{2}=l$.

Using the formula found in a) we can write the state on the RHS as

$$
|k+1, l\rangle=\frac{1}{\sqrt{\binom{k+1}{l}}}(|\underbrace{11 \ldots 1}_{l} \underbrace{00 \ldots 0}_{k+1-l}\rangle+\text { perm })
$$

and the first state on the LHS as

$$
|k, l-1\rangle \otimes|1,1\rangle=\frac{1}{\sqrt{\binom{k}{l-1}}}(|\underbrace{11 \ldots 1}_{l-1} \underbrace{00 \ldots 0}_{k-l+1}\rangle+\text { perm }) \otimes|1\rangle .
$$

Hence we can get

$$
\begin{aligned}
c_{1} & =\langle k+1, l|(|k, l-1\rangle \otimes|1,1\rangle) \\
& =\frac{1}{\sqrt{\binom{k+1}{l} \cdot\binom{k}{l-1}}(\langle\underbrace{11 \ldots 1}_{l} \underbrace{00 \ldots 0}_{k+1-l}|+\operatorname{perm})((|\underbrace{11 \ldots 1}_{l-1} \underbrace{00 \ldots 0}_{k-l+1}\rangle+\operatorname{perm}) \otimes|1\rangle)} \\
& =\frac{\binom{k}{l-1}}{\sqrt{\binom{k+1}{l} \cdot\binom{k}{l-1}}}=\sqrt{\frac{l}{k+1}} .
\end{aligned}
$$

By similar arguments (or just normalization) we can also get $c_{2}=\sqrt{\frac{k-l+1}{k+1}}$.
So we can conclude that

$$
|k+1, l\rangle=\sqrt{\frac{l}{k+1}}|k, l-1\rangle \otimes|1,1\rangle+\sqrt{\frac{k-l+1}{k+1}}|k, l\rangle \otimes|1,0\rangle .
$$

c) By the orthogonality of $|k-1, l-1\rangle$ and $|k+1, l\rangle$ and using the same phase convention as in the script we can get

$$
|k-1, l-1\rangle=-\sqrt{\frac{k+1-l}{k+1}}|k, l-1\rangle \otimes|1,1\rangle+\sqrt{\frac{l}{k+1}}|k, l\rangle \otimes|1,0\rangle
$$

Exercise 2) Representations of the Symmetric Group

a) The action of S_{2} on $\left(\mathbb{C}^{2}\right)^{\otimes 2}$ can be written as (in the standard basis):

$$
\mathrm{id}_{12} \mapsto\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \pi_{12} \mapsto\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

By the Schur transform we have

$$
V_{1} \otimes V_{1} \cong\left(V_{0} \otimes \mathbb{C}^{1}\right) \oplus\left(V_{2} \otimes \mathbb{C}^{1}\right)
$$

So if we decompose the representation of S_{2} on $\left(\mathbb{C}^{2}\right)^{\otimes 2}$ into a direct sum of irreducible representation, we know by the Schur-Weyl duality that two one-dimensional representations appear, one with multiplicity one and one with multiplicity three.

We can diagonalize the matrix that corresponds to π_{12} and get the eigenvalues $(1,1,1,-1)$ with corresponding eigenvectors $|a\rangle:=|00\rangle,|b\rangle:=|11\rangle,|c\rangle:=\frac{1}{\sqrt{2}}|01+10\rangle$ and $|d\rangle:=\frac{1}{\sqrt{2}}|01-10\rangle$.

Hence on the subspace spanned by $|a\rangle$ the action of S_{2} is trivial and the same happens on the subspace spanned by $|b\rangle$ and the subspace spanned by $|c\rangle$. On the subspace spanned by $|d\rangle$ the action of S_{2} is given by

$$
\mathrm{id}_{12} \mapsto 1, \pi_{12} \mapsto-1
$$

the alternating representation.
So the one-dimensional trivial representation appears with multiplicity three and the onedimensional alternating representation appears with multiplicity one.
b) It is enough to specify the action of S_{3} on $\left(\mathbb{C}^{2}\right)^{\otimes 3}$ on a generating set of S_{3}. We choose the set $\left\{\pi_{12} \otimes \mathrm{id}_{3}, \mathrm{id}_{1} \otimes \pi_{23}\right\}$. The action of S_{3} on $\left(\mathbb{C}^{2}\right)^{\otimes 3}$ can now be written as (in the standard basis):

$$
\pi_{12} \otimes \operatorname{id}_{3} \mapsto\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \otimes \mathbb{1}_{2}, \operatorname{id}_{1} \otimes \pi_{23} \mapsto \mathbb{1}_{2} \otimes\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

By the Schur transform we have

$$
V_{1}^{\otimes 3} \cong\left(V_{1} \otimes \mathbb{C}^{2}\right) \oplus\left(V_{3} \otimes \mathbb{C}^{1}\right)
$$

So if we decompose the representation of S_{3} on $\left(\mathbb{C}^{2}\right)^{\otimes 3}$ into a direct sum of irreducible representation, we know by the Schur-Weyl duality that a one-dimensional representation with multiplicity four and a two-dimensional representation with multiplicity two appear.

The one-dimensional representation that appears is given by the trivial representation and the corresponding one-dimensional subspaces are given by: $|a\rangle:=|000\rangle,|b\rangle:=|111\rangle,|c\rangle: \left.=\frac{1}{\sqrt{3}} \right\rvert\, 001+$ $010+100\rangle$ and $|d\rangle:=\frac{1}{\sqrt{3}}|011+101+110\rangle$.

To specify the first two-dimensional representation, we use

$$
|e\rangle:=|1,0,-+\rangle=\frac{1}{\sqrt{2}}|01-10\rangle \otimes|0\rangle \equiv \frac{1}{\sqrt{2}}|010-100\rangle
$$

as on pages 20-21 in the script. To get a second vector we note that the action of $S U(2)$ commutes with the action of S_{3} and hence for any $\pi \in S_{3}: \pi|1,0,-+\rangle=\sum_{p} c_{p}|1,0, p\rangle$. The element $\pi_{12} \otimes \mathrm{id}_{2}$ just gives a minus one, but for $\mathrm{id}_{1} \otimes \pi_{23}$ we get

$$
\left|f^{\prime}\right\rangle:=\left(\operatorname{id}_{1} \otimes \pi_{23}\right) \frac{1}{\sqrt{2}}|010-100\rangle=\frac{1}{\sqrt{2}}|001-100\rangle
$$

This new vector $\left|f^{\prime}\right\rangle$ is not orthogonal to $|e\rangle$, but using Gram-Schmidt orthonormalization we can get such a vector:

$$
|f\rangle:=\sqrt{\frac{2}{3}}|001\rangle-\frac{1}{\sqrt{6}}|010\rangle-\frac{1}{\sqrt{6}}|100\rangle .
$$

The space spanned by $\{|e\rangle,|f\rangle\}$ now gives the space of the first two dimensional representation. The action in the basis $\{|e\rangle,|f\rangle\}$ can be calculated to

$$
\mathrm{id}_{1} \otimes \pi_{23} \mapsto\left(\begin{array}{cc}
\frac{1}{2} & \frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right), \pi_{12} \otimes \mathrm{id}_{3} \mapsto\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

To specify the second two-dimensional representation, we use

$$
|g\rangle:=|1,1,-+\rangle=\frac{1}{\sqrt{2}}|01-10\rangle \otimes|1\rangle \equiv \frac{1}{\sqrt{2}}|011-101\rangle
$$

Similarly as before we can get

$$
\left|h^{\prime}\right\rangle:=\left(\operatorname{id}_{1} \otimes \pi_{23}\right) \frac{1}{\sqrt{2}}|011-101\rangle=\frac{1}{\sqrt{2}}|011-110\rangle
$$

as well as

$$
|h\rangle:=\frac{1}{\sqrt{6}}|011\rangle+\frac{1}{\sqrt{6}}|101\rangle-\sqrt{\frac{2}{3}}|110\rangle
$$

The space spanned by $\{|g\rangle,|h\rangle\}$ now gives the space of the second two dimensional representation. The action in the basis $\{|g\rangle,|h\rangle\}$ can be calculated to

$$
\mathrm{id}_{1} \otimes \pi_{23} \mapsto\left(\begin{array}{cc}
\frac{1}{2} & \frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right), \pi_{12} \otimes \mathrm{id}_{3} \mapsto\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

the same matrices as before (as it should be since the same two-dimensional representation appears two times).

