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Exercise 1) Quantum Circuits

In the standard basis the matrix of the controlled-NOT gate is given by

UCNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

It is unitary since U †CNOTUCNOT = 14.

The matrix of a controlled-U gate is given by

UC−U =

(
1(2n+1−2) 0

0 U

)
.

It is unitary since U †C−UUC−U = 12n+1 .

Lemma 1 can be proven as follows. A straightforward calculation gives us

exp(iα)U(~ez, β)U(~ey, γ)U(~ez, δ) (1)

=

(
exp(i(α− β/2− δ/2)) cos(γ2 ) − exp(i(α− β/2 + δ/2)) sin(γ2 )
exp(i(α+ β/2− δ/2)) sin(γ2 ) exp(i(α+ β/2 + δ/2)) cos(γ2 )

)
(2)

Since V is unitary, the rows and columns of V have to be orthonormal. From this it follows that
there exist α, β, γ, δ ∈ R such that V can be written as in (2).

Lemma 2 can be proven as follows. Define

A = U(~ez, β)U(~ey,
γ

2
)

B = U(~ey,−γ/2)U(~ez,−
δ + β

2
))

C = U(~ez,
δ − β

2
) .

Then

ABC = U(~ez, β)U(~ey,
γ

2
)U(~ey,−

γ

2
)U(~ez,−

δ + β

2
))U(~ez,

δ − β
2

) = 1 .

Since σ2X = 1 and σXU(~ey, θ)σX = U(~ey,−θ) as well as σXU(~ez, θ)σX = U(~ez,−θ) for all θ ∈ R,
we have

σXBσX = σXU(~ey,−
γ

2
)σXσXU(~ez,−

δ + β

2
)σX = U(~ey,

γ

2
)U(~ez,

δ + β

2
) .

Hence

AσXBσXC = U(~ez, β)U(~ey,
γ

2
)U(~ey,

γ

2
)U(~ez,

δ + β

2
)U(~ez,

δ − β
2

) = U(~ez, β)U(~ey, γ)U(~ez, δ) .

By Lemma 1 this concludes the proof.

By Lemma 2 a controlled-U gate can now be implemented as follows:
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• • •
(

1 0
0 exp(iα)

)
=

U C �������� B �������� A

For any V ∈ U(2) with V 2 = U , the circuit

• • • •

• = • �������� • ��������

U V V † V

does the job.1

A controlled-U gate with 4 control qubits, can now be implemented as follows:

|c1〉 • •

|c2〉 • •

|c3〉 • •

|c4〉 • •

|0〉 �������� • • ��������

|0〉 �������� • • ��������

|0〉 �������� • ��������

U

The generalization to a controlled-U gate with n control qubits is then straightforward.

Exercise 2) Representations of SU(2)

We first check that the exponential map is surjective. In the Bloch sphere representation every
pure state can be represented as Bloch vector on the Bloch sphere S2. Since every g ∈ SU(2)
takes pure states to pure states, it takes Bloch vectors to Bloch vectors. Thus every g ∈ SU(2)
corresponds to a rotation on the Bloch sphere. But by exercise 1 on problem sheet 2, rotations
on the Bloch sphere correspond to U(~e, α) = exp(−iα2~e ·~σ). Hence we can write every g ∈ SU(2)
as g = exp(ia) for some a ∈ su(2).

The Baker-Campbell-Hausdorff formula together with the defining property of a Lie Algebra

1That such a V exists can be seen as follows. Since U is unitary, we can write U = WDW † with W and
D = diag(λ1, λ2) unitary, where λ1, λ2 ∈ C. Now choose V =W

√
DW †.
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representation give us

Vk(g · h) = Vk(exp(ia) · exp(ib))

= Vk(exp(ia+ ib+
1

2
[ia, ib] +

1

12
([ia, [ia, ib]]− [ib, [ia, ib]]) + . . .))

= exp(ivk(a) + ivk(b)−
1

2
vk([a, b]) +

i

12
vk([b, [a, b]]− [a, [a, b]]) + . . .)

= exp(ivk(a) + ivk(b)−
1

2
[vk(a), vk(b)] + . . .)

= exp(ivk(a)) · exp(ivk(b)) = Vk(exp(ia)) · Vk(exp(ib)) = Vk(g) · Vk(h) .

We take

exp(ivk(b)) = Vk(exp(ib)) (3)

as an implicit definition for vk(b) given a representation Vk of SU(2). To see that the formula
from the exercise sheet follows from that, we have a look at exp(ivk(ta)) = Vk(exp(ita)) with
t ∈ R. We have

exp(ivk(ta)) = Vk(exp(ita)) = (Vk(exp(ia)))t = (exp(ivk(a)))t = exp(itvk(a)) , (4)

and so by differentiating exp(itvk(a)) = Vk(exp(ita)) with respect to t, multiplying it with (−i)
and setting t = 0 we get

vk(a) = −i d
dt
Vk(exp(iat))|t=0 .

Note that (4) shows vk(ta) = tvk(a).

Using definition (3) we can also show that vk(a + b) = vk(a) + vk(b). For this we use the
Zassenhaus formula (which is the converse of the Baker-Campbell-Hausdorff formula):

exp(t(a+ b)) = exp(ta) · exp(tb) · exp(− t
2

2
[a, b]) · exp(

t3

6
([a, [a, b]] + 2[b, [a, b]])) · . . . .

We calculate

exp(itvk(a+ b)) = exp(ivk(t(a+ b))) = Vk(exp(it(a+ b)))

= Vk(exp(ita) · exp(itb) · exp(− t
2

2
[ia, ib]) · . . .)

= Vk(exp(ita)) · Vk(exp(itb)) · Vk(exp(
t2

2
[a, b])) · . . .

= exp(ivk(ta)) · exp(ivk(tb)) · exp(vk(
t2

2
[a, b])) · . . .

= exp(itvk(a)) · exp(itvk(b)) · exp(
t2

2
vk([a, b])) · . . . .

Taking Taylor expansions of the exponential functions gives us for the first order in t that
vk(a+ b) = vk(a) + vk(b).

Now we continue by reading off the second order in t:

−1

2
vk(a+ b)vk(a+ b) = −1

2
vk(a)vk(a)− 1

2
vk(b)vk(b)− vk(a)vk(b) +

1

2
vk([a, b]) .

But this is [vk(a), vk(b)] = vk([a, b]).
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