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Exercise 1) Rotations on the Bloch sphere

Using a Taylor expansion it can be checked easily that

exp(±iα
2
~e · ~σ) = cos(

α

2
)1± i(~e · ~σ) sin(

α

2
) .

Furthermore it is straightforward to check that

~a× (~b× ~c) = ~b · (~a · ~c)− ~c · (~a ·~b)

(~a · ~σ)(~b · ~σ) = (~a ·~b)1 + i~σ · (~a×~b) .

Now we calculate
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2
)~e · ~σ)(~v · ~σ)(cos(
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2
)1 + i sin(
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)~e · ~σ)

= cos2(
α

2
)(~v · ~σ) + sin2(
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2
)(~e · ~σ)(~v · ~σ)(~e · ~σ)

+ i cos(
α

2
) sin(

α

2
)((~v · ~σ)(~e · ~σ)− (~e · ~σ)(~v · ~σ)) .

To evaluate the second term we calculate

(~e · ~σ)(~v · ~σ)(~e · ~σ) = ((~e · ~v)1 + i~σ · (~e× ~v))(~e · ~σ) = (~e · ~v)(~e · ~σ) + i(~σ · (~e× ~v))(~e · ~σ)

= (~e · ~v)(~e · ~σ) + i(((~e× ~v) · ~e)1 + i~σ · ((~e× ~v)× ~e))
= (~e · ~v)(~e · ~σ)− ~σ · ((~e× ~v)× ~e) = ((~e · ~v)~e+ (~e× (~e× ~v))) · ~σ
= ((~e · ~v)~e+ ~e(~e · ~v)− ~v(~e · ~e)) · ~σ = (2(~e · ~v)~e− ~v) · ~σ .

For the third term we can get

(~v · ~σ)(~e · ~σ)− (~e · ~σ)(~v · ~σ) = (~v · ~e)1 + i~σ · (~v × ~e)− ((~e · ~v)1 + i~σ · (~e× ~v))

= −2i(~e× ~v) · ~σ .

Putting everything together we get

U(~e, α)(~v · ~σ)U(~e, α)† = cos2(
α

2
)(~v · ~σ) + sin2(

α

2
)((2(~e · ~v)~e− ~v) · ~σ)

+ 2 cos(
α

2
) sin(

α

2
)((~e× ~v) · ~σ)

= (cos(α)~v + sin(α)(~e× ~v) + (1− cos(α))(~e(~e · ~v))) · ~σ .

But by Rodrigues’ rotation formula we have

R(~e, α)~v = ~v cos(α) + (~e× ~v) sin(α) + ~e(~e · ~v)(1− cos(α)) .

This concludes the proof.

Exercise 2) Quantum Teleportation

1. Before Bob receives the classical bit from Alice, the reduced density matrix on Bob’s side
can be calculated to 1/2 (i.e. he does not have any information about the state to transmit).
Hence teleportation does not allow to transmit quantum states faster than light.

2. Since the teleportation protocol is linear and any mixed state input can be decomposed
into its eigendecomposition ρ =

∑
i pi|i〉〈i|, the protocol also works for mixed states.
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3. No, in general this is impossible because Alice does not know the state |ψ〉 of the qubit she
has to send to Bob and the laws of quantum mechanics prevent her from determining the
state when she only has a single copy of |ψ〉 in her possession. And even if she did know
the state, describing it precisely takes an infinite amount of classical information since |ψ〉
takes values in a continuous space. So if she did know |ψ〉, it would take forever to send
the state to Bob.

4. The crucial point is that only the target qubit at Bob’s side is left in the state |ψ〉. The
reduced density matrix on Alice’s side after the protocol can be calculated to |0〉 or |1〉,
depending upon her measurement result. That is, the information about the state |ψ〉 is
no longer on Alice side, but it has been transferred to Bob’s side.

Exercise 3) Entanglement Swapping

Notation: |φ±〉 := 1√
2
(|00〉± |11〉) and |ψ±〉 := 1√

2
(|01〉± |10〉). Let’s call the qubits of Alice and

Bob that we wish to entangle A and B resp. and let them start in maximally entangles states
with auxiliary qubits C1 and C2 at Charlie:

|ρin〉 = |φ+〉AC1 ⊗ |φ+〉C2B

=
1

2
[|00〉AB ⊗ |00〉C1C2 + |01〉AB ⊗ |01〉C1C2 + |10〉AB ⊗ |10〉C1C2 + |11〉AB ⊗ |11〉C1C2 ]

=
1

2
√

2
[|00〉AB ⊗ (|φ+〉C1C2 + |φ−〉C1C2) + |11〉AB ⊗ (|φ+〉C1C2 − |φ−〉C1C2)

+ |01〉AB ⊗ (|ψ+〉C1C2 + |ψ−〉C1C2) + |10〉AB ⊗ (|ψ+〉C1C2 − |ψ−〉C1C2)]

=
1

2
[|φ+〉AB ⊗ |φ+〉C1C2 + |φ−〉AB ⊗ |φ−〉C1C2

+ |ψ+〉AB ⊗ |ψ+〉C1C2 + |ψ−〉AB ⊗ |ψ−〉C1C2 ] .

Now Charlie can perform a projective measurement in the basis {|φ±〉, |ψ±〉} on his subsys-
tem C1C2. Thereby the subsystem AB is projected in one of the maximally entangled states
{|φ±〉, |ψ±〉}, each with probability 1

4 . Afterwards Charlie sends the measurement outcome to
Bob, who can then apply a local unitary to transform the state on AB into any desired maximally
entangled state (as in the teleportation protocol).

One could also say, that we can teleport the state on AC1 to Bob, using the ebit on C2B.

This is a useful procedure to generate entanglement between two (possibly widely separated)
systems. Note that there is no interaction between Alice and Bob.

Exercise 4) Representations of SU(2)

We need to show [vk(σi), vk(σj)] = vk[σi, σj ] for all i, j ∈ {+,−, z}. Since [σi, σj ] = −[σj , σi], all
commutators that we have to consider can be calculated to [σ+, σ−] = σz, [σz, σ+] = 2σ+ and
[σz, σ−] = −2σ−. We calculate the first case and get

vk([σ+, σ−])|k, l〉 = vk(σz)|k, l〉 = (2l − k)|k, l〉
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as well as

[vk(σ+), vk(σ−)]|k, l〉 = vk(σ+)vk(σ−)|k, l〉 − vk(σ−)vk(σ+)|k, l〉

= vk(σ+)
√
l(k − l + 1)|k, l − 1〉 − vk(σ−)

√
(k − l)(l + 1)|k, l + 1〉

=
√
l(k − l + 1)vk(σ+)|k, l − 1〉 −

√
(k − l)(l + 1)vk(σ−)|k, l + 1〉

= l(k − l + 1)|k, l〉 − (k − l)(l + 1)|k, l〉 = (2l − k)|k, l〉 .
Likewise for the other cases.

First notice that σx = σ+ + σ− and σy = i(σ− − σ+). This implies

[
∑
i

vk(σi)vk(σi)]|k, l〉 = [(vk(σx))2 + (vk(σy))2 + (vk(σz))
2]|k, l〉

= [(vk(σ+ + σ−))2 + (vk(iσ− − iσ+))2 + (vk(σz))
2]|k, l〉

= [(vk(σ+) + vk(σ−))2 − (vk(σ−)− vk(σ+))2 + (vk(σz))
2]|k, l〉

= [2vk(σ+)vk(σ−) + 2vk(σ−)vk(σ+) + vk(σz)vk(σz)]|k, l〉
= 2vk(σ+)vk(σ−)|k, l〉+ 2vk(σ−)vk(σ+)|k, l〉+ vk(σz)vk(σz)|k, l〉
= k(k + 2)|k, l〉 .

Proof by induction. We have |k + 1, k + 1〉 = |k, k〉|1, 1〉, and applying the lowering operator
vk+1(σ−) to this we get

|k + 1, k〉 =

√
k

k + 1
|k, k − 1〉|1, 1〉+

√
1

k + 1
|k, k〉|1, 0〉 .

This is the basic step. Now assume that the claim holds for some l, that is

|k + 1, l〉 =

√
l

k + 1
|k, l − 1〉|1, 1〉+

√
k + 1− l
k + 1

|k, l〉|1, 0〉.

The inductive step is done by applying vk(σ−) to both sides of this equation. For the LHS we
get

vk(σ−)|k + 1, l〉 =
√
l(k − l + 2)|k + 1, l − 1〉 .

For the RHS we get

vk(σ−)(

√
l

k + 1
|k, l − 1〉|1, 1〉+

√
k + 1− l
k + 1

|k, l〉|1, 0〉)

=

√
l

k + 1
vk(σ−)(|k, l − 1〉|1, 1〉) +

√
k + 1− l
k + 1

vk(σ−)(|k, l〉|1, 0〉)

=

√
l

k + 1
((vk(σ−)|k, l − 1〉)|1, 1〉+ |k, l − 1〉(vk(σ−)|1, 1〉))

+

√
k + 1− l
k + 1

(vk(σ−)|k, l〉)|1, 0〉

=

√
l

k + 1

√
(l − 1)(k − l + 2)|k, l − 2〉|1, 1〉+

√
l

k + 1
|k, l − 1〉|1, 0〉

+

√
k + 1− l
k + 1

√
l(k − l + 1)|k, l − 1〉|1, 0〉 .

Combining this we get

|k + 1, l − 1〉 =

√
l − 1

k + 1
|k, l − 2〉|1, 1〉+

√
k − l + 2

k + 1
|k, l − 1〉|1, 0〉 .

This concludes the proof.
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