Exercise 1) Bloch Vector

We can think of a quantum state ρ on \mathbb{C}^2 as a hermitian, positive semi-definite operator with unit trace. Choosing a basis, the linear operators on \mathbb{C}^2 are 2×2 matrices, i.e. $\rho \in M_2(\mathbb{C})$. It can be checked easily that $M_2(\mathbb{C})$ forms a 4-dim. vector space over the field of complex numbers. But since ρ is hermitian, ρ lies in a 4-dim. real subspace. This is because for any $A \in M_2(\mathbb{C})$ hermitian we have that $(\alpha A)^{\dagger} = \overline{\alpha} A^{\dagger} = \overline{\alpha} A$ is hermitian if and only if $\alpha \in \mathbb{R}$. Choosing the Pauli matrices, together with the unit $\mathbb{1}_2$ as a basis, we have

$$\rho \in \{a_0 \cdot \mathbb{1}_2 + a_1 \cdot \sigma_X + a_2 \cdot \sigma_Y + a_3 \cdot \sigma_Z | a_i \in \mathbb{R}\}$$

Since $tr(\sigma_i) = 0$ it follows from $tr(\rho) = 1$ that $tr(\rho) = 2a_0$ and hence $a_0 = \frac{1}{2}$. Since ρ is positive semi-definite it follows that the eigenvalues k_i of ρ have to be greater or equal than zero, i.e.

$$k_i = \frac{1}{2} [\operatorname{tr}(\rho) \pm \sqrt{\operatorname{tr}(\rho)^2 - 4 \operatorname{det}(\rho)}] = \frac{1}{2} \pm \sqrt{\frac{1}{4} - \operatorname{det}(\rho)} \ge 0 .$$

and hence $0 \leq \det(\rho) \leq \frac{1}{4}$. Now write $\rho = \begin{pmatrix} \frac{1}{2} + a_3 & a_1 - ia_2 \\ a_1 + ia_2 & \frac{1}{2} - a_3 \end{pmatrix}$ and hence

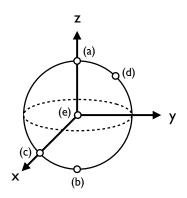
$$\det(\rho) = (\frac{1}{2} + a_3)(\frac{1}{2} - a_3) - (a_1 + ia_2)(a_1 - ia_2) = \frac{1}{4} - a_3^2 - a_1^2 - a_2^2 .$$

This gives us

$$k_i = \frac{1}{2} \pm \sqrt{a_1^2 + a_2^2 + a_3^2} = \frac{1}{2} \pm \sqrt{\frac{1}{4}(r_1^2 + r_2^2 + r_3^2)} \ge 0$$

for $\frac{1}{2}r_i := a_i$ and it follows that $|\vec{r}|^2 = \sqrt{r_1^2 + r_2^2 + r_3^2} \le 1$ as well as $\rho = \frac{1}{2}(\mathbb{1}_2 + \vec{r} \cdot \vec{\sigma})$.

Graphical representation, where (a) corresponds to $|0\rangle$, (b) is $|1\rangle$, (c) is $|+\rangle$, (d) is $|-\rangle$ and (e) represents $\frac{1}{2}$:



Exercise 2) Average State

- Every density matrix ρ is hermitian and thus there exists a orthonormal basis {|i⟩}_{i∈I} in which ρ is diagonal (by the spectral decomposition theorem). Now let P_i = |i⟩⟨i| be the projector onto the one dimensional eigenstate |i⟩ to eigenvalue k_i of ρ. Then ρ = ∑_{i∈I} k_i|i⟩⟨i| and if all the p_i are distinguishable, the spectral decomposition is unique and hence p_i = k_i as well as |φ_i⟩ = |i⟩. If some eigenvalues are identical, i.e. the characteristic polynomial has multiplicities, the decomposition is not unique (the partial orthonormal basis in the multiplicity space can be transformed by unitary transformations).
- 2. If the $\{|\Phi_i\rangle\}$ do not form an orthonormal basis, then the decomposition is unique if and only if the state ρ is pure.

Exercise 3) Partial Trace

The reduced density operator ρ_A is given by

$$\rho_{A} = \sum_{kl} |k\rangle \langle l|_{A} \operatorname{tr}[(|l\rangle \langle k| \otimes \mathbb{1}_{B})(\sum_{klmn} \rho_{klmn} |k\rangle \langle l|_{A} \otimes |m\rangle \langle n|_{B})] = \sum_{klm} \rho_{klmm} |k\rangle \langle l|_{A}$$

Hermiticity of ρ_A follows from

$$\rho_A^{\dagger} = \left(\sum_{klm} \rho_{klmm} |k\rangle \langle l|_A\right)^{\dagger} = \sum_{klm} \overline{\rho}_{klmm} (|k\rangle \langle l|_A)^{\dagger} = \sum_{klm} \rho_{lkmm} |l\rangle \langle k|_A = \rho_A \; .$$

Since $\rho_{AB} \ge 0$, its scalar product with any pure state is non-negative. Now consider the pure states $|\Phi_i\rangle_{AB} = |\psi\rangle_A \otimes |i\rangle_B$ in $\mathcal{H}_A \otimes \mathcal{H}_B$:

$$0 \leq \sum_{i} \langle \Phi_{i} | \rho_{AB} | \Phi_{i} \rangle = \sum_{i} (\langle \psi |_{A} \otimes \langle i |_{B}) \rho_{AB} (|\psi\rangle_{A} \otimes |i\rangle_{B})$$

$$= \sum_{i} (\langle \psi |_{A} \otimes \langle i |_{B}) (\sum_{klmn} \rho_{klmn} | k \rangle \langle l |_{A} \otimes | m \rangle \langle n |_{B}) (|\psi\rangle_{A} \otimes |i\rangle_{B})$$

$$= \sum_{iklmn} \rho_{klmn} \langle \psi | k \rangle \langle l | \psi \rangle_{A} \langle i | m \rangle \langle n | i \rangle_{B}$$

$$= \sum_{mkl} \rho_{klmm} \langle \psi | k \rangle \langle l | \psi \rangle_{A} = \langle \psi | \rho_{A} | \psi \rangle_{A} .$$

Since this hold for any $|\psi\rangle_A \in \mathcal{H}_A$, it follows that ρ_A is positive semi-definite.

The normalization follows from

$$\operatorname{tr}(\rho_A) = \sum_n \langle n|_A (\sum_{mkl} \rho_{klmm} |k\rangle \langle l|_A) |n\rangle_A = \sum_{mn} \rho_{nnmm} = \operatorname{tr}(\rho_{AB}) = 1 \; .$$

The reduced density matrix of $\rho_{AB} = |\phi\rangle\langle\phi|_{AB}$ is mixed, even though $|\phi\rangle_{AB}$ is pure:

$$\begin{split} \rho_{AB} &= \frac{1}{2} (r|00\rangle \langle 00|_{AB} + r\sqrt{1-r}|00\rangle \langle 11|_{AB} + r\sqrt{1-r}|11\rangle \langle 00|_{AB} + (1-r)|11\rangle \langle 11|_{AB}) \\ \rho_A &= \mathrm{tr}_B(\rho_{AB}) = \frac{1}{2} (r|0\rangle \langle 0|_A + (1-r)|1\rangle \langle 1|_A) \ . \end{split}$$

7. Oktober 2010

The corresponding Bloch vector is given by $\vec{v}_r = (0, 0, 2r - 1)^T$.

We have $P_X(x) = \sum_y P_{XY}(x, y)$ with $P_X(x) \ge 0$ for all x and $\sum_x P_X(x) = \sum_{xy} P_{XY}(x, y) = 1$. Likewise for $P_Y(y)$.

The probability distribution P_{XY} can be represented as a quantum state using an orthonormal basis $\{|x\rangle_X \otimes |y\rangle_Y\}$: $P_{XY} \stackrel{\circ}{=} \rho_{XY} = \sum_{xy} P_{XY}(x,y)|x\rangle\langle x|_X \otimes |y\rangle\langle y|_Y$.

For the partial trace over Y we get

$$\begin{split} \rho_X &= \operatorname{tr}_Y(\rho_{XY}) = \sum_{y'} (\mathbbm{1}_X \otimes \langle y'|_Y) \rho_{XY}(\mathbbm{1}_X \otimes \langle y'|_Y) = \sum_{xyy'} P_{XY}(x,y) |\langle y'|y \rangle|^2 |x \rangle \langle x|_X \\ &= \sum_{xy} P_{XY}(x,y) |x \rangle \langle x|_X = \sum_x P_X(x) |x \rangle \langle x|_X \;, \end{split}$$

which is a quantum representation of P_X . Likewise for the partial trace over X.