Repetition: Linear Algebra

Matthias Christandl

September 27, 2010

This is a brief reminder of some facts from linear algebra that will be needed in the course.

Theorem 1 (Spectral theorem). Every Hermitian operator $A: \mathbb{C}^{d} \rightarrow \mathbb{C}^{d}$ has an orthonormal basis $\left\{\left|v_{i}\right\rangle\right\}_{i=1}^{d}$ (its eigenbasis) and real numbers $\left\{\lambda_{i}\right\}_{i=1}^{d}$ with $\lambda_{i} \geq \lambda_{i+1}$ (its eigenvalues) such that

$$
A=\sum_{i=1}^{d} \lambda_{i}\left|v_{i}\right\rangle\left\langle v_{i}\right|
$$

In other words, there exists a unitary matrix U such that

$$
A=U D U^{\dagger}
$$

where $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{d}\right)$.
Proof. See e.g. 2] or [1].
Corollary 2 (Singular value decomposition). For every linear operator A : $\mathbb{C}^{d} \rightarrow \mathbb{C}^{d}$ there are two unitaries V and W and non-negative numbers s_{i} with $s_{i} \geq s_{i+1}$ (the singular values) such that

$$
A=V S W
$$

where $S=\operatorname{diag}\left(s_{1}, \ldots, s_{d}\right)$.
Proof. We base our proof on the spectral theorem. $A^{\dagger} A$ is Hermitian since $\left(A^{\dagger} A\right)^{\dagger}=A^{\dagger}\left(A^{\dagger}\right)^{\dagger}=A^{\dagger} A$. By the spectral theorem, $A^{\dagger} A=U D U^{\dagger}$, for a unitary U and $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{d}\right)$ with $\lambda_{i} \geq \lambda_{i+1}$. Since $A^{\dagger} A$ is furthermore positive semi-definite $\left(\langle v| A^{\dagger} A|v\rangle=\langle w \mid w\rangle \geq 0\right)$, all eigenvalues are non-negative, $\lambda_{i} \geq 0$ for all i.

Define $S:=D^{\frac{1}{2}}=\operatorname{diag}\left(\lambda_{1}^{\frac{1}{2}}, \ldots, \lambda_{d}^{\frac{1}{2}}\right)$, and $\tilde{V}:=A U S^{-1}$ where S^{-1} denotes the pseudo-inverse of S, here $S^{-1}=\operatorname{diag}\left(s_{1}^{-1}, \ldots, s_{k}^{-1}, 0, \ldots, 0\right)$, where k is the largest integer with $s_{k}>0 . \tilde{V}$ is a partial isometry ${ }^{1}$ since

$$
\tilde{V}^{\dagger} \tilde{V}=\left(A U S^{-1}\right)^{\dagger}\left(A U S^{-1}\right)=S^{-1} U^{\dagger} A^{\dagger} A U S^{-1}=S^{-1} D S^{-1}=\sum_{i=1}^{k}|i\rangle\langle i|
$$

[^0]This implies that the first k columns of \tilde{V} are orthonormal and the remaining empty. Let V be a unitary matrix whose first k columns are identical to \tilde{V}. Then $\tilde{V} S=V S$.

It is true that ker $A^{\dagger} A=\operatorname{ker} A$. The inclusion \subseteq is obvious. The opposite inclusion follows since for $|v\rangle \notin \operatorname{ker} A, A|v\rangle \neq 0$, hence $\langle v| A^{\dagger} A|v\rangle \neq 0$, hence $A^{\dagger} A|v\rangle \neq 0$ which implies $|v\rangle \notin \operatorname{ker} A^{\dagger} A$. The projector onto the complement of the kernel of A therefore takes the form $U \sum_{i=1}^{k}|i\rangle\langle i| U^{\dagger}$.

The statement of the corollary then follows for $W=U^{\dagger}$ since

$$
V S W=\tilde{V} S W=A U S^{-1} S U^{\dagger}=A U \sum_{i=1}^{k}|i\rangle\langle i| U^{\dagger}=A
$$

Note that the proof simplifies a little if $k=d$.
Lemma 3. Let $\mathcal{H}_{A} \cong \mathbb{C}^{d}$ and $\mathcal{H}_{B} \cong \mathbb{C}^{d^{\prime}}$ be finite dimensional complex vector spaces. Then we have a vector space isomorphism

$$
\operatorname{Hom}\left(\mathcal{H}_{A}, \mathcal{H}_{B}\right) \cong \mathcal{H}_{A^{*}} \otimes \mathcal{H}_{B}
$$

where $\mathcal{H}_{A^{*}}$ is the vector space dual to \mathcal{H}_{A}, given by

$$
\operatorname{Hom}\left(\mathcal{H}_{A}, \mathcal{H}_{B}\right) \ni K \mapsto \mathbf{1}_{A^{*}} \otimes K|\Phi\rangle_{A^{*} A} \in \mathcal{H}_{A^{*}} \otimes \mathcal{H}_{B}
$$

where $|\Phi\rangle_{A^{*} A}=\sum_{k=1}^{d}|k\rangle_{A^{*}}|k\rangle_{A}$ for an orthonormal basis $\left\{|k\rangle_{A}\right\}$ with dual basis $\left\{|k\rangle_{A^{*}}\right\}$.

Proof. $K=\sum_{i j} a_{i j}|i\rangle_{B}\left\langle\left. j\right|_{A}\right.$. Then
$\mathbf{1}_{A^{*}} \otimes K|\Phi\rangle_{A^{*} A}=\sum_{i=1}^{d^{\prime}} \sum_{j=1}^{d} \sum_{k=1}^{d} a_{i j}\left(\mathbf{1}_{A^{*}} \otimes|i\rangle_{B}\left\langle\left. j\right|_{A}\right)|k k\rangle_{A^{*} A}=\sum_{i=1}^{d^{\prime}} \sum_{k=1}^{d} a_{i j}|j\rangle_{A^{*}}|i\rangle_{A}\right.$.

Corollary 4 (Invariance of maximally entangled state). Let $A: \mathbb{C}^{d} \rightarrow \mathbb{C}^{d}$ be linear and let $|\Phi\rangle=\sum_{i=1}^{d}|i i\rangle$

$$
A \otimes \mathbf{1}|\Phi\rangle=\mathbf{1} \otimes A^{T}|\Phi\rangle
$$

Proof.

$$
\begin{aligned}
A \otimes \mathbf{1}|\Phi\rangle & =\sum_{k l} a_{k l}|k\rangle\langle l| \otimes \mathbf{1} \sum_{i}|i i\rangle \\
& =\sum_{k l i} a_{k l}|k\rangle\langle l \mid i\rangle|i\rangle \\
& =\sum_{k l} a_{k l}|k\rangle|l\rangle
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
\mathbf{1} \otimes A^{T}|\Phi\rangle & =\sum_{k l} a_{k l} \mathbf{1} \otimes|l\rangle\langle k| \sum_{i}|i i\rangle \\
& =\sum_{k l i} a_{k l}|i\rangle|l\rangle\langle k \mid i\rangle \\
& =\sum_{k l} a_{k l}|k\rangle|l\rangle
\end{aligned}
$$

This proves the claim.
Corollary 5 (Schmidt decomposition). Let $|\phi\rangle_{A B} \in \mathcal{H}_{A} \otimes \mathcal{H}_{B}$ (where we assume $\mathcal{H}_{A} \cong \mathcal{H}_{B}$), then there exist o.n. bases $\left\{\left|v_{i}\right\rangle_{A}\right\}$ and $\left\{\left|w_{i}\right\rangle_{B}\right\}$ and nonnegative numbers s_{i} s.th.

$$
|\phi\rangle_{A B}=\sum_{i} s_{i}\left|v_{i}\right\rangle_{A}\left|w_{i}\right\rangle_{B}
$$

Proof. Let $\left\{|i\rangle_{A}\right\}$ and $\left\{|i\rangle_{B}\right\}$ be o.n. bases for \mathcal{H}_{A} and \mathcal{H}_{B}. Then

$$
|\phi\rangle_{A B}=\sum_{i j} a_{i j}|i\rangle_{A}|j\rangle_{B} .
$$

The singular value decomposition of the matrix A with entries $(A)_{i j}=a_{i j}$ reads $A=V S W$ for unitaries V and W and a non-negative diagonal matrix S. Let $|\Phi\rangle=\sum_{i}|i i\rangle$.

$$
\begin{aligned}
|\phi\rangle_{A B} & =A \otimes \mathbf{1}|\Phi\rangle \\
& =V S W \otimes \mathbf{1}|\Phi\rangle \\
& =V S \otimes W^{T}|\Phi\rangle \\
& =V \otimes W^{T} \cdot S \otimes \mathbf{1}|\Phi\rangle \\
& =V \otimes W^{T} \cdot \sum_{i} s_{i}|i i\rangle \\
& =\sum_{i} s_{i}\left|v_{i}\right\rangle\left|w_{i}\right\rangle
\end{aligned}
$$

where $\left|v_{i}\right\rangle=V|i\rangle$ and $\left|w_{i}\right\rangle=W^{T}|i\rangle$

References

[1] R. Bhatia, Matrix analysis, Graduate Texts in Mathematics, Springer, 1996.
[2] R. A. Horn and C. R. Johnson, Matrix analysis, Cambridge University Press, 1985.

[^0]: ${ }^{1}$ An isometry $V: \mathbb{C}^{d} \rightarrow \mathbb{C}^{d^{\prime}}$ is a matrix that satisfies $V^{\dagger} V=\mathbf{1}_{\mathbb{C}^{d}}$. A partial isometry is an isometry on a subspace of \mathbb{C}^{d}, i.e. $V^{\dagger} V=P$ for a projector P onto this subspace.

