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This is a brief reminder of some facts from linear algebra that will be needed
in the course.

Theorem 1 (Spectral theorem). Every Hermitian operator A : C* — C¢ has
an orthonormal basis {|v;)}d_; (its eigenbasis) and real numbers {\;}¢_ | with
Ai > Niy1 (its eigenvalues) such that

d
i=1

In other words, there exists a unitary matriz U such that
A=UDU"
where D = diag(\1, ..., \q).
Proof. See e.g. [2] or [1]. O
Corollary 2 (Singular value decomposition). For every linear operator A :

C? — C? there are two unitaries V and W and non-negative numbers s; with
S; > Sit1 (the singular values) such that

A=VSW.
where S = diag(s1,...,S4).
Proof. We base our proof on the spectral theorem. AfA is Hermitian since
(ATA)T = AT(AT)T = ATA. By the spectral theorem, ATA = UDUT, for a uni-
tary U and D = diag(\y, ..., \g) with A\; > A\;41. Since ATA is furthermore pos-
itive semi-definite ((v| ATA |v) = (w|w) > 0), all eigenvalues are non-negative,
A; > 0 for all 4.
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Define S := D? = diag(A\Z,...,A2), and V := AUS™! where S~! denotes
the pseudo-inverse of S, here S~ = diag(s; ", ..., sl, 0,...,0), where k is the
largest integer with s, > 0. V is a partial isometry || since

k
VIV = (AUS™)(AUS™!) = STUTATAUS ™ = §7'DS™1 = " i)(il.
i=1

LAn isometry V : C¢ — C? is a matrix that satisfies VIV = 1ca. A partial isometry is an
isometry on a subspace of C%, i.e. VIV = P for a projector P onto this subspace.



This implies that the first & columns of V are orthonormal and the remaining
empty. Let V be a unitary matrix whose first k columns are identical to V.
Then VS = VS.

It is true that ker ATA = ker A. The inclusion C is obvious. The opposite
inclusion follows since for |v) & ker A, A|v) # 0, hence (v| ATA|v) # 0, hence
At A|v) # 0 which implies |v) & ker ATA. The projector onto the complement
of the kernel of A therefore takes the form UZ;C:I i) (i|UT.

The statement of the corollary then follows for W = UT since

k
VSW =VSW = AUS™'SUT = AU Y _|i)(i[UT = A

Note that the proof simplifies a little if k = d.

Lemma 3. Let Hy = C% and Hp = C% be finite dimensional complex vector
spaces. Then we have a vector space isomorphism

Hom(Ha, Hp) 2 Ha- @ Hp
where H a4~ 1s the vector space dual to H 4, given by
Hom(Ha,Hp) 2 K — 14+ @ K |®) 4. 4 € Hax @ Hp,

where |®) 4., = 22:1 |k) 4« |K) 4 for an orthonormal basis {|k) 4} with dual
basis {|k) 4.}

Proof. K =3, a;;i)p (jl 4. Then

d’ d d
1o®K (@) 400 =Y ) Y aij(1a-®li) 5 (Gl 4) [kk) 4o 4 = ZZ% 1) 4

i=1 j=1 k=1 i=1 k=1
O

Corollary 4 (Invariance of maximally entangled state). Let A : C* — C¢ be
linear and let |®) = Z?Zl |i7)

A1 |0) =1 AT |0)
Proof.

AQL|®) = aw k) (I|@1> i)
kl i
= aw k) (1]i) |i)

kli

= an|k)[1)
kl



On the other hand
1o A" |0) = Zakll ® |I) (k| Z |ii)
kl i

= > aneli) 1) )

kli

=Y aulk) D)
kl

This proves the claim. O

Corollary 5 (Schmidt decomposition). Let |¢) 45 € Ha ® Hp (where we as-
sume Ha = Hp), then there exist o.n. bases {|v;) 4} and {|w;)z} and non-
negative numbers s; s.th.

|9) ap = ZSz Vi) a |wi) g
Proof. Let {|7) 4} and {|i) 5} be o.n. bases for H4 and Hp. Then

|9y ap = Zaij i) a 1) 5 -
ij

The singular value decomposition of the matrix A with entries (A);; = a;; reads
A = VSW for unitaries V and W and a non-negative diagonal matrix S. Let

|®) =32, lid).
‘¢>AB =A®1[®)
=VSW ®1|®)
=VSeoW!|o)
=VoW!l. . So1|d)
=VoW" > s li)

= Z si |vi) [wi)

where |v;) = V |i) and |w;) = W7 |i) O
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