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This is a brief reminder of some facts from linear algebra that will be needed
in the course.

Theorem 1 (Spectral theorem). Every Hermitian operator A : Cd → Cd has
an orthonormal basis {|vi〉}di=1 (its eigenbasis) and real numbers {λi}di=1 with
λi ≥ λi+1 (its eigenvalues) such that

A =

d∑
i=1

λi|vi〉〈vi|.

In other words, there exists a unitary matrix U such that

A = UDU†

where D = diag(λ1, . . . , λd).

Proof. See e.g. [2] or [1].

Corollary 2 (Singular value decomposition). For every linear operator A :
Cd → Cd there are two unitaries V and W and non-negative numbers si with
si ≥ si+1 (the singular values) such that

A = V SW.

where S = diag(s1, . . . , sd).

Proof. We base our proof on the spectral theorem. A†A is Hermitian since
(A†A)† = A†(A†)† = A†A. By the spectral theorem, A†A = UDU†, for a uni-
tary U and D = diag(λ1, . . . , λd) with λi ≥ λi+1. Since A†A is furthermore pos-
itive semi-definite (〈v|A†A |v〉 = 〈w|w〉 ≥ 0), all eigenvalues are non-negative,
λi ≥ 0 for all i.

Define S := D
1
2 = diag(λ

1
2
1 , . . . , λ

1
2

d ), and Ṽ := AUS−1 where S−1 denotes
the pseudo-inverse of S, here S−1 = diag(s−11 , . . . , s−1k , 0, . . . , 0), where k is the

largest integer with sk > 0. Ṽ is a partial isometry 1 since

Ṽ †Ṽ = (AUS−1)†(AUS−1) = S−1U†A†AUS−1 = S−1DS−1 =

k∑
i=1

|i〉〈i|.

1An isometry V : Cd → Cd′ is a matrix that satisfies V †V = 1Cd . A partial isometry is an
isometry on a subspace of Cd, i.e. V †V = P for a projector P onto this subspace.
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This implies that the first k columns of Ṽ are orthonormal and the remaining
empty. Let V be a unitary matrix whose first k columns are identical to Ṽ .
Then Ṽ S = V S.

It is true that kerA†A = kerA. The inclusion ⊆ is obvious. The opposite
inclusion follows since for |v〉 6∈ kerA, A |v〉 6= 0, hence 〈v|A†A |v〉 6= 0, hence
A†A |v〉 6= 0 which implies |v〉 6∈ kerA†A. The projector onto the complement

of the kernel of A therefore takes the form U
∑k

i=1 |i〉〈i|U†.
The statement of the corollary then follows for W = U† since

V SW = Ṽ SW = AUS−1SU† = AU

k∑
i=1

|i〉〈i|U† = A

Note that the proof simplifies a little if k = d.

Lemma 3. Let HA
∼= Cd and HB

∼= Cd′ be finite dimensional complex vector
spaces. Then we have a vector space isomorphism

Hom(HA,HB) ∼= HA∗ ⊗HB

where HA∗ is the vector space dual to HA, given by

Hom(HA,HB) 3 K 7→ 1A∗ ⊗K |Φ〉A∗A ∈ HA∗ ⊗HB ,

where |Φ〉A∗A =
∑d

k=1 |k〉A∗ |k〉A for an orthonormal basis {|k〉A} with dual
basis {|k〉A∗}.

Proof. K =
∑

ij aij |i〉B 〈j|A. Then

1A∗⊗K |Φ〉A∗A =

d′∑
i=1

d∑
j=1

d∑
k=1

aij(1A∗⊗|i〉B 〈j|A) |kk〉A∗A =

d′∑
i=1

d∑
k=1

aij |j〉A∗ |i〉A .

Corollary 4 (Invariance of maximally entangled state). Let A : Cd → Cd be

linear and let |Φ〉 =
∑d

i=1 |ii〉

A⊗ 1 |Φ〉 = 1⊗AT |Φ〉

Proof.

A⊗ 1 |Φ〉 =
∑
kl

akl |k〉 〈l| ⊗ 1
∑
i

|ii〉

=
∑
kli

akl |k〉 〈l|i〉 |i〉

=
∑
kl

akl |k〉 |l〉
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On the other hand

1⊗AT |Φ〉 =
∑
kl

akl1⊗ |l〉 〈k|
∑
i

|ii〉

=
∑
kli

akl |i〉 |l〉 〈k|i〉

=
∑
kl

akl |k〉 |l〉

This proves the claim.

Corollary 5 (Schmidt decomposition). Let |φ〉AB ∈ HA ⊗ HB (where we as-
sume HA

∼= HB), then there exist o.n. bases {|vi〉A} and {|wi〉B} and non-
negative numbers si s.th.

|φ〉AB =
∑
i

si |vi〉A |wi〉B

Proof. Let {|i〉A} and {|i〉B} be o.n. bases for HA and HB . Then

|φ〉AB =
∑
ij

aij |i〉A |j〉B .

The singular value decomposition of the matrix A with entries (A)ij = aij reads
A = V SW for unitaries V and W and a non-negative diagonal matrix S. Let
|Φ〉 =

∑
i |ii〉.

|φ〉AB = A⊗ 1 |Φ〉
= V SW ⊗ 1 |Φ〉
= V S ⊗WT |Φ〉
= V ⊗WT · S ⊗ 1 |Φ〉

= V ⊗WT ·
∑
i

si |ii〉

=
∑
i

si |vi〉 |wi〉

where |vi〉 = V |i〉 and |wi〉 = WT |i〉
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