Exercise 1) $\quad S_{4}$ in Schur-Weyl Duality

Write down the matrices of the representation of S_{4} on $\left(\mathbb{C}^{2}\right)^{\otimes 4}$. Decompose this representation into a direct sum of irreducible representation and show explicitly how S_{4} acts on the direct summands of this decomposition.

Exercise 2) The Sign Representation of S_{n}

Apart from the trivial (and in particular one-dimensional) representation of S_{n} given by

$$
S_{n} \ni \pi \mapsto 1 \in \mathbf{C}
$$

there is a second one-dimensional representation of S_{n} given by

$$
S_{n} \ni \pi \mapsto \operatorname{sign}(\pi) \in \mathbf{C}
$$

where $\operatorname{sign}(\pi)$ is the sign of the permutation. When $n=2$, we have found this representation once in

$$
\left(\mathbf{C}^{2}\right)^{\otimes 2}
$$

as the singlet. In general it appears once in

$$
\left(\mathbf{C}^{n}\right)^{\otimes n}
$$

(Just as in $\left(\mathbf{C}^{2}\right)^{\otimes n}$, the permutation group acts by permuting the tensor factors). Write down the vector that spans this irreducible representation.

