Exercise 1) Tensor Product Representations

The representation of $S U(2)$ on \mathbb{C}^{2} is given by

$$
\begin{aligned}
V_{1}: S U(2) & \rightarrow S U(2) \\
g & \mapsto g
\end{aligned}
$$

the defining representation. How does the n-fold tensor product representation $V_{1}^{\otimes n}$ act on $\left(\mathbb{C}^{2}\right)^{\otimes n}$?

What is the corresponding representation of $s u(2)$ on $\left(\mathbb{C}^{2}\right)^{\otimes n} ?$

Exercise 2) Schur Transform

As we have seen in the lecture, we have

$$
V_{1}^{\otimes n} \cong \bigoplus_{k} V_{k} \otimes \mathbb{C}^{m_{k}^{n}}
$$

The corresponding circuit is given by

If we take a computational basis state $\left|i_{1} i_{2} \cdots i_{n}\right\rangle$ as an input and then perform a measurement on the output register l, what is the measurement result?

Let $n=2$ and imagine that the output of the Schur transform is $|k, l\rangle=|0,0\rangle$. What was the input? What was the input for the output $|k, l\rangle=|2,0\rangle,|2,1\rangle,|2,2\rangle$ resp. ?

Let $n=3$ and imagine that the output of the Schur transform is $|k, l\rangle=|3,3\rangle$. What was the input?

Exercise 3) Asymptotic Behavior of m_{k}^{n}

We have seen in the lecture that the coefficients m_{k}^{n} are determined by $m_{k}^{n}=\binom{n}{\frac{n-k}{2}} \cdot\left(\frac{2 k+2}{n+k+2}\right)$ for $n \bmod 2=k \bmod 2$ and vanish otherwise. In this exercise we calculate with what exponent m_{k}^{n} grows asymptotically for k linear in n.

Use Stirling's approximation $\lim _{n \rightarrow \infty}\left(\frac{n!}{\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}}\right)=1$ to show that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \left(m_{k}^{n}\right)=h\left(\frac{1-c}{2}\right)
$$

where $k=c \cdot n$ and $h(x)=-x \log x-(1-x) \log (1-x)$ is the binary entropy function. All logarithms are to base two and e is Euler's number.

