Quantum Field Theory III

HS 10, Exercise Sheet 1
Due date: 29.09.2010

Exercise 1:

Show that for two 2-components spinors ψ and χ, we have
a) $\psi \chi=\chi \psi$
b) $\bar{\psi} \bar{\chi}=\bar{\chi} \bar{\psi}$
c) $(\psi \chi)^{\dagger}=\bar{\psi} \bar{\chi}$
d) $\bar{\psi} \bar{\sigma}^{\mu} \chi=-\chi \sigma^{\mu} \bar{\psi}=\left(\bar{\chi} \bar{\sigma}^{\mu} \psi\right)^{\star}=-\left(\psi \sigma^{\mu} \bar{\chi}\right)^{\star}$
e) $\psi \sigma^{\mu} \bar{\sigma}^{\nu} \chi=\chi \sigma^{\nu} \bar{\sigma}^{\mu} \psi=\left(\bar{\chi} \bar{\sigma}^{\nu} \sigma^{\mu} \bar{\psi}\right)^{\star}=\left(\bar{\psi} \bar{\sigma}^{\mu} \sigma^{\nu} \bar{\chi}\right)^{\star}$

Exercise 2:

Prove the Fierz rearrangement identity:

$$
\chi_{\alpha}(\xi \eta)=-\xi_{\alpha}(\eta \chi)-\eta_{\alpha}(\chi \xi)
$$

Exercise 3:

Prove the following reduction identities:
a) $\sigma_{\alpha \dot{\alpha}}^{\mu} \bar{\sigma}_{\mu}^{\dot{\beta} \beta}=2 \delta_{\alpha}^{\beta} \delta_{\dot{\alpha}}^{\dot{\beta}}$
b) $\sigma_{\alpha \dot{\alpha}}^{\mu} \sigma_{\mu, \beta \dot{\beta}}=2 \epsilon_{\alpha \beta} \epsilon_{\dot{\alpha} \dot{\beta}}$
c) $\bar{\sigma}^{\mu \dot{\alpha} \alpha} \bar{\sigma}_{\mu}^{\dot{\beta} \beta}=2 \epsilon^{\alpha \beta} \epsilon^{\dot{\alpha} \dot{\beta}}$
d) $\left[\sigma^{\mu} \bar{\sigma}^{\nu}+\sigma^{\nu} \bar{\sigma}^{\mu}\right]_{\alpha}^{\beta}=2 \eta^{\mu \nu} \delta_{\alpha}^{\beta}$
e) $\left[\bar{\sigma}^{\mu} \sigma^{\nu}+\bar{\sigma}^{\nu} \sigma^{\mu}\right]_{\dot{\alpha}}^{\dot{\beta}}=2 \eta^{\mu \nu} \delta_{\dot{\alpha}}^{\dot{\beta}}$
f) $\bar{\sigma}^{\mu} \sigma^{\nu} \bar{\sigma}^{\rho}=\eta^{\mu \nu} \bar{\sigma}^{\rho}+\eta^{\nu \rho} \bar{\sigma}^{\mu}-\eta^{\mu \rho} \bar{\sigma}^{\nu}+i \epsilon^{\mu \nu \rho \lambda} \bar{\sigma}_{\lambda}$
g) $\sigma^{\mu} \bar{\sigma}^{\nu} \sigma^{\rho}=\eta^{\mu \nu} \sigma^{\rho}+\eta^{\nu \rho} \sigma^{\mu}-\eta^{\mu \rho} \sigma^{\nu}-i \epsilon^{\mu \nu \rho \lambda} \sigma_{\lambda}$,
where $\epsilon^{\mu \nu \rho \lambda}$ is the totally antisymmetric tensor with $\epsilon^{0123}=+1$.
Exercise 4:
In this exercise we will learn how 2-components spinors are connected to the Dirac spinors we used in QFT 1.
A Dirac spinor transforms in the reducibel representation $(1 / 2,0) \oplus(0,1 / 2)$. It can be built from the dotted and undotted spinors as

$$
\Psi_{D}=\binom{\psi_{\alpha}}{\bar{\chi}^{\dot{\alpha}}}
$$

The Dirac gamma matrices are given by

$$
\gamma^{\mu}=\left(\begin{array}{cc}
0 & \sigma^{\mu} \\
\bar{\sigma}^{\mu} & 0
\end{array}\right), \quad \gamma_{5} \equiv i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}=\left(\begin{array}{cc}
1_{2 x 2} & 0 \\
0 & -1_{2 x 2}
\end{array}\right)
$$

The Dirac spinor is formed by a left- and a right-handed Weyl spinor:

$$
\begin{aligned}
& P_{L} \Psi_{D}=\frac{1+\gamma_{5}}{2} \Psi_{D}=\binom{\psi_{\alpha}}{0} \\
& P_{R} \Psi_{D}=\frac{1-\gamma_{5}}{2} \Psi_{D}=\binom{0}{\bar{\chi}^{\dot{\alpha}}}
\end{aligned}
$$

From the 2-components spinors we can also form a Majorana spinor

$$
\Psi_{M}=\binom{\psi_{\alpha}}{\bar{\psi}^{\dot{\alpha}}}
$$

by setting $\chi \equiv \psi$.
a) Show that the Lagrangian for a Dirac fermion

$$
\mathcal{L}_{D}=i \bar{\Psi}_{D} \gamma^{\mu} \partial_{\mu} \Psi_{D}-M \bar{\Psi}_{D} \Psi_{D}
$$

written in 2-components notation up to a total divergence is

$$
\mathcal{L}_{D}=i \bar{\psi} \bar{\sigma}^{\mu} \partial_{\mu} \psi+i \bar{\chi} \bar{\sigma}^{\mu} \partial_{\mu} \chi-M(\psi \chi+\bar{\psi} \bar{\chi}) .
$$

Note that $\bar{\Psi}_{D}=\left(\begin{array}{ll}\chi^{\alpha} & \bar{\psi}_{\dot{\alpha}}\end{array}\right)$.
b) Prove the following identities:
$\bar{\Psi}_{i} P_{L} \Psi_{j}=\chi_{i} \psi_{j}$
c) $\bar{\Psi}_{i} P_{R} \Psi_{j}=\bar{\psi}_{i} \bar{\chi}_{j}$
d) $\bar{\Psi}_{i} \gamma^{\mu} P_{L} \Psi_{j}=\bar{\psi}_{i} \bar{\sigma}^{\mu} \psi_{j}$
e) $\bar{\Psi}_{i} \gamma^{\mu} P_{R} \Psi_{j}=\chi_{i} \sigma^{\mu} \bar{\chi}_{j}$
f) Show that the Lagrangian for Majorana fermions

$$
\mathcal{L}_{M}=\frac{i}{2} \bar{\Psi}_{M} \gamma^{\mu} \partial_{\mu} \Psi_{M}-\frac{1}{2} M \bar{\Psi}_{M} \Psi_{M}
$$

written in 2-components notation up to a total divergence is

$$
\mathcal{L}_{M}=i \bar{\psi} \bar{\sigma}^{\mu} \partial_{\mu} \psi-\frac{1}{2} M(\psi \psi+\bar{\psi} \bar{\psi}) .
$$

