
Inheritance and Exceptions	
 Week 9	

Programming techniques	
 1	

An Introduction to C++ 	

Inheritance
Exceptions

A C++ review: from modular to generic programming

Inheritance	

  is another very important feature"
  it models the concept: 

objects of type B are the same as A, but in addition have…"
 Examples"

 A shape is a 2D figure which has an area and can be drawn, although
I know neither generally"

 A triangle is a shape, but its area is … and it looks like …"
 A square is a shape, but its area is … and it looks like …"
 A complex figure is a shape and consists of an array of shapes 
"

 A monoid is a semigroup, but in addition contains a unit element"
 A group is a monoid, but in addition has an inverse"

 A simulation can be run but I donʼt know how generally"
 A Penna simulation is run this way:"

Inheritance and Exceptions	
 Week 9	

Programming techniques	
 2	

Abstract base classes	

 are good for expressing common ideas"
 We want to have a function that for any shape draws it and prints

its area:"
 void perform(Simulation& s) {  

 std::cout << “Running the simulation “  
 << s.name() << “\n”;  
 s.run(); // run it 
}"

 This class must have an name() and a run() member function"
 class Simulation{  

public:  
 Simulation () {};  
 virtual std::string name() const =0;  
 virtual void run() =0;  
};"

 virtual means that this function depends on concrete shape"
 =0 means that this function must be provided for any concrete shape"

Concrete derived classes	

 PennaSim and IsingSim are both Simulations:"
 class PennaSim: public Simulation {  

public:  
 std::string name() const;  
 void run();  
};"

 class IsingSim: public Simulation{  
public:  
 std::string name() const;  
 void run()  
};"

 Examples"
 Simulation x;  

// Error since it is abstract! name() and run() not defined"
 PennaSim p; // OK!"
 IsingSim i; // OK!"
 Simulation& sim=p; // also OK, since it is a reference!"

Inheritance and Exceptions	
 Week 9	

Programming techniques	
 3	

Using inheritance	

  recall the function void perform(Simulation&);"
  let us call it for two shapes"

PennaSim p;"
IsingSim i;"
perform(p); // will use PennaSim::name() and PennaSim::run()"
perform(i); // will use IsingSim::name() and IsingSim::run()  
"

 All virtual function can be redefined by derived class"
  In addition a derived class can define additional members 
"

 There exists a third access specifier: protected"
 means public for derived classes"
 means private for others"

The virtual function table	

 How does the program know the concrete type of an object?"
 The compiler creates a virtual function table (vtable) for each class"

 The table contains pointers to the functions"
 A pointer to that table is stored in the object, before the other

members"
 The program checks the virtual function table of the object for the

address of the function to call"
 Needs two memory accesses and cannot be inlined"

vtable of IsingSim"
&IsingSim::name"

&IsingSim::run"

vtable of PennaSim"
&PennaSim::name"

&PennaSim::run"

An object of type
PennaSim"

Vtable pointer"

More data "
members"

An object of type
IsingSim"

Vtable pointer"
More data "
members"

An object of type
Simulation"

Vtable pointer"

Inheritance and Exceptions	
 Week 9	

Programming techniques	
 4	

Using templates instead	

 The same could be done with templates:"
 template <class SIMULATION>  
void perform(SIMULATION& s) {  
 std::cout << name() << “\n”;  
 run();  
}"

 class PennaSim{  
public:  
 std::string name() const;  
 void run();  
};"

 PennaSim p;  
show(t); // instantiates the template for triangle"

 But type of SIMULATION must be known at compile time!"

Comparing OOP and templates	

 Object Oriented Programming:"
 void perform(Simulation& s)  
{  
 run();  
}"

 Object needs to be derived from Simulation"
 Concrete type decided at runtime"

 Generic programming:"
 template <class SIM> void perform(SIM& s)  
{  
 s.run();  
}"

 Object needs to have a run function"
 Concrete type decided at compile time"

Inheritance and Exceptions	
 Week 9	

Programming techniques	
 5	

Virtual functions versus templates	

Object oriented programming"
  uses virtual functions"
  decision at run-time"
  works for objects derived from the

common base"
  one function created for the base

class -> saves space"
  virtual function call needs lookup

in type table -> slower"
  extension possible using only

definition of base class 
"

 Most useful for application
frameworks, user interfaces,
“big” functions"

Generic programming"
  uses templates"
  decision at compile-time"
  works for objects having the right

members"
  a new function created for each

class used -> more space"
  no virtual function call, can be

inlined -> faster"
  extension needs definitions and

implementations of all functions"

  useful for small, low level
constructs, small fast functions
and generic algorithms"

When to use which?	

 Generic programming allows inlining"
 faster code  
"

 Object oriented programming more flexible"
 how to age an Array of animals of different types?  
 
void show(std::vector<Animal*> a) {  
 for (int i=0; i<a.size(); ++i)  
 a[i]->age();  
}  
"

 This works for array of mixed animals, e.g. fish, sheep, …"

Inheritance and Exceptions	
 Week 9	

Programming techniques	
 6	

Example: random number generators	

 We want to be able to switch random number generators at
runtime: use virtual functions"

 First attempt: rng1.h"
 Make operator() a virtual function"
 Problem: virtual function calls are slow"

 Second attempt: rng2.h"
 Store a buffer of random numbers"
 operator() uses numbers from that buffer"
 Only when buffer is used up, a virtual function fill_buffer() is

called to create many random numbers"
 This reduces the cost of inheritance since the virtual function is called

only rarely"

How to deal with runtime errors?	

 What should our integration library do if the user passes an illegal
argument?"
 Return 0?"
 Return infinity?"
 Abort?"
 Set an error flag?"

 Neither of these is ideal"
 Return values of 0 or infinity cannot be distinguished from good

results"
 Aborting the program is no good idea for mission critical programs"
 Error flags are rarely checked by the users"

 Solution"
 C++ exception handling"

Inheritance and Exceptions	
 Week 9	

Programming techniques	
 7	

C++ Exceptions 	
	

 The solution are exceptions"

 The library recognizes an error or other exceptional situation."
 It does not know how to deal with it"
 Thus it throws an exception"

 The calling program might be able to deal with the exception"
 It can catch the exception and do whatever is necessary"

  If an exception is not caught"
 The program terminates"

How to throw an exception	

 What is an exception?"
 An object of any type"

 Thrown using the throw keyword:"
 if(n<=0)  

 throw "n too small";"
 if(index >= size())  

 throw std::range_error("index");"

  Throwing the exception "
 causes the normal execution to terminate"
 The call stack is unwound, the functions are exited, all local objects destroyed"
 Until a catch clause is found"

Inheritance and Exceptions	
 Week 9	

Programming techniques	
 8	

The standard exception base class	

  Is in the header <exception>"
 class exception {  
public:  
 exception() throw();  
 exception(const exception&) throw();  
 exception& operator=(const exception&) throw();  
 virtual ~exception() throw();  
 virtual const char* what() const throw();  
};"

 The function qualifier throw() indicates that these functions do
not throw any exceptions"

The standard exceptions	

 are in <stdexcept>, all derived from std::exception"
 Logic errors (base class std::logic_error)"

 domain_error: value outside the domain of the variable"
 invalid_argument: argument is invalid "
 length_error: size too big"
 out_of_range: argument has invalid value"

 Runtime errors (base class std::runtime_error)"
 range_error: an invalid value occurred as part of a calculation"
 overflow_error: a value got too large"
 underflow_error: a value got too small"

 All take a string as argument in the constructor"

Inheritance and Exceptions	
 Week 9	

Programming techniques	
 9	

Catching exceptions	

 Statements that might throw an exception are put into a try block"
 After it catch() clauses can catch some or all exceptions"
 Example:"

 int main()  
{  
 try {  
 std::cout << integrate(sin,0,10,1000);  
 }  
 catch (std::exception& e) {  
 std::cerr << "Error: " << e.what() << "\n";  
 }  
 catch(...) {// catch all other exceptions 
 std::cerr << "A fatal error occurred.\n";  
 }  
}"

Exceptions example: main.C, simpson.h, simpson.C	

  int main() {  
  
 bool done;  
 do {  
 done = true;  
 try {  
 double a,b;  
 unsigned int n;  
 std::cin >> a >> b >> n;  
 std::cout << simpson(sin,a,b,n);  
 }  
 catch (std::range_error& e) {  
 // also catches derived exceptions 
 std::cerr << "Range error: " << e.what() << "\n";  
 done=false;  
 }  
 // all other exceptions go uncaught 
 } while (!done);  
}"

Inheritance and Exceptions	
 Week 9	

Programming techniques	
 10	

More exception details	

 Exceptions and inheritance"
 A catch(ExceptionType& t) clause also catches exceptions

derived from ExceptionType"

 Rethrowing excpeptions"
 If a catch() clause decides it cannot deal with the exception it can re-

throw it with throw;"

 More details in text books"
 Uncaught exceptions"
 throw() qualifiers"
 Exceptions thrown while dealing with an exception"
 Exceptions in destructors "

 Can be very bad since the destructor is not called!"

C++ review	

 Stack class"
 procedural"
 modular"
 object oriented"
 generic"

Inheritance and Exceptions	
 Week 9	

Programming techniques	
 11	

Procedural stack implementation: stack1.C	

void push(double*& s, double v) "
{"
 *s++=v;"
}"
"
double pop(double *&s) "
{"
 return *--s;"
}"
"

int main() {"
"
double stack[1000];"
double* p=stack; "
"
push(p,10.);"
"
std::cout << pop(p) << “\n”; "
std::cout << pop(p) << “\n”; "
// error of popping below"
// beginning goes undetected!"
}"

Modular stack implementation: stack2.C	

namespace Stack {"
struct stack {"
 double* s;"
 double* p;"
 int n;};"
"
void init(stack& s, int l) {"
 s.s=new double[l];"
 s.p=s;"
 s.n=l;}"
"
void destroy(stack& s) {"
 delete[] s.s;"
}"
"

void push(stack& s, double v) {"
 if (s.p==s.s+s.n-1) throw

std::runtime_error(“overflow”);"
 *s.p++=v;"
}"
"
double pop(stack& s) {"

 if (s.p==s.s) throw std::runtime_error
(“underflow”);"

 return *--s.p;"

}"
"
int main() {"
Stack::stack s;"

Stack::init(s,100); // must be called"
Stack::push(s,10.);"
Stack::pop(s);"

Stack::pop(s); // throws error"
Stack::destroy(s); // must be called"
}"

Inheritance and Exceptions	
 Week 9	

Programming techniques	
 12	

Object oriented stack implementation: stack3.C	

namespace Stack {"
class stack {"
 double* s;"
 double* p;"
 int n;"
public:"
 stack(int=1000); // like init"
 ~stack(); // like destroy"
 void push(double);"
 double pop();"
};"

int main() {"
 Stack::stack s(100);"
 // initialization done automatically"
 s.push(10.);"
 std::cout << s.pop();"
 // destruction done automatically"
}"

Generic stack implementation: stack4.C	

namespace Stack {"
template <class T>"
class stack {"
 T* s;"
 T* p;"
 int n;"
public:"
 stack(int=1000); // like init"
 ~stack(); // like destroy"
 void push(T);"
 T pop();"
};"

int main() {"
 Stack::stack<double> s(100);"
 // works for any type!"
 s.push(1.3);"
 cout << s.pop();"
}"

Inheritance and Exceptions	
 Week 9	

Programming techniques	
 13	

Summary of Programming Styles	

 Procedural implementation"
 possible in all languages 
"

 Modular implementation"
 allows transparent change in underlying data structure without

breaking the user’s program. E.g. we can add range checks 
"

 Object oriented implementation"
 additionally makes sure that initialization and cleanup functions are

called whenever needed  
"

 Generic implementation"
 works for any data type"

Review of the numerical integration exercise	

 The numerical integration exercise demonstrates all four
programming styles:"
 1st part: procedural programming"
 2nd part: modular programming"

 We built a library"
 3rd part generic programming"

 We uses templates"
 4th part: object oriented programming"

 We derive from a base class"

 After you have coded all four versions, perform benchmarks"
 Which version is fastest?"
 Which version is the most flexible?"

Inheritance and Exceptions	
 Week 9	

Programming techniques	
 14	

Procedural programming	

  double integrate(double (*f) (double)),  
 double a, double b, unsigned int N)  
{  
 double result=0;  
 double x=a;  
 double dx=(b-a)/N;  
 for (unsigned int i=0; i<N; ++i, x+=dx)  
 result +=f(x);  
 return result*dx;  
}"

  double func(double x) {return x*sin(x);}  
cout << integrate(func,0,1,100);"

 same as in C, Fortran, etc."

Generic programming	

  template <class T, class F>  
T integrate(F f, T a, T b, unsigned int N)  
{  
 T result=T(0);  
 T x=a;  
 T dx=(b-a)/N;  
 for (unsigned int i=0; i<N; ++i, x+=dx)  
 result +=f(x);  
 return result*dx;  
}"

  struct func {operator()(double x) { return x*sin(x); }};  
cout << integrate(func(),0.,1.,100);"

 allows inlining!"
 works for any type T"

Inheritance and Exceptions	
 Week 9	

Programming techniques	
 15	

Object oriented programming	

  Class Integrator { // base class implements integration  
 public: � 
 Integrator() {}  
 double integrate(double a, double b, unsigned int n);  
 virtual double f(double)=0;  
};"

  class MyFunc : public Integrator { // derived class 
public:  
 MyFunc() {}  
 double f(double x) {return x*sin(x);} //implements function 
};"

  MyFunc f;  
f.integrate(0,1,1000);"

