An Introduction to the hardware of your PC

Know your tools!

We need to understand what the computer does before
we can write fast programs

Understanding hardware is important

¢ Steps in executing a program
¢ We write our code in a high-level language
¢ The compiler translates the program to machine language
¢ The computer executes the machine language program

¢ We want to write a fast program

¢ Need to understand hardware limitations
¢ Need to understand what the compiler does

¢ This week

¢ Introduction to main hardware components
¢ Understanding the limitations

Schematic diagram of a computer

Memory

L2 cache

!

Bus interface unit

' !

instruction
cache L1 data cache

' v

Fetch and
Decode unit

System bus

-~ Execution unit

Components of the CPU

¢ The main components of the central processing unit (CPU) are:

¢ Memory controller
¢ Manages loading from and storing to memory
¢ Registers
¢ Can store integer or floating point numbers
¢ Values can be set to specifed constants
¢ Values can be loaded from or stored into memory

¢ Arithmetic and logical units (ALU)

¢ Performs arithmetic operations and comparisons
¢ Operates on values in the registers (very fast)
¢ On some CPUs they can operate on contents of memory (slow)

¢ Fetch and decode unit
¢ Fetches the next instruction from memory

¢ Interprets the numerical value of the instruction and decides what to do
¢ Dispatches operations to ALU and memory controller to perform the operation

¢ Be aware that modern CPUs are more complex (see later)

Machine code and assembly language

¢ The CPU performs instructions read from memory
¢ Instructions are given in machine code
¢ These are just numbers which are interpreted as instructions
¢ Ugly and nearly impossible to interpret
¢ Assembly language
¢ |s a one-to-one translation from machine code to a readable text form
¢ |s non-portable: differs depending on CPU-type
¢ Typical instructions
¢ Load values into registers
¢ Load data from memory into register or store registers into memory
¢ Perform arithmetic and logical instructions on registers
¢ Jump (branch) to another instruction

Types of CPUs

¢ CISC (complex instruction set)

¢ RISC (reduced instruction set)

¢ post-RISC (superscalar)

¢ EPIC (explicitly parallel instruction set)
¢ Vector

¢ GPUs

CISC CPUs

¢ Complex instruction set
¢ Many high-level instructions (example: sin-cos-instruction)

¢ Take many cycles to execute
¢ High clock rate does not tell everything

¢ Examples
¢ Intel IA-32/EM64T
¢ AMD x86_64

¢ Advantage
¢ High level instructions makes assembly language programming easy

¢ Disadvantage
¢ Very complex CPU for high level instructions

RISC CPUs

¢ Reduced instruction set

¢ Only low level instructions
¢ E.g. load from memory into register, add values in registers, ...

¢ But very fast execution speed (few cycles per instruction)
¢ Many registers in the CPU

¢ Example:

¢ IBM Power and PowerPC
¢ E.g. IBM BlueGene/P JUGENE: PowerPC 450 850 MHz

¢ Advantages
¢ fast and can be pipelined
¢ Small and use little power

¢ Disadvantage
¢ More machine language instructions needed

Superscalar and post-RISC processors

¢ Have more than one pipeline
¢ Can execute instructions in parallel
¢ Can reorder instructions
¢ Even better execution speed

¢ But also get more complex than simple RISC processors

TP add A3 45

EPIC and Intel IA-64

¢ Explicitly Parallel Instruction set
¢ E.g. Intel Itanium (IA-64)

¢ The machine language can specify which instructions can run
simultaneously

¢ CPU simplified since no automatic detection of independent
instructions

¢ Compilers get harder to write

10

GPUs

¢ General-purpose GPUs offer immense floating point performance
¢ Performance gain often >10x in actual application

¢ Example: NVIDIA Tesla C870
¢ 128 cores
¢ over 500 GFlop/s (fastest Xeon: 107 GFlop/s)

¢ SIMD (Single Instruction Multiple Data) programming style
¢ Harder to program

¢ Many cores

¢ Inhomogeneous and small memory

¢ Transfer between CPU and GPU is expensive
¢ Programming environments: CUDA, OpenCL

11

RISC, CISC and GPUs in modern supercomputers

Power 42

8.40 %

5833813

7343434

1418576

Source:

NEC 1 0.20 % 122400 131072 1280 500
Sparc 2 0.40 % 139110 1562247 15104 tOp Org
Intel 1A-64 5 1.00 % 269498 317132 50416
Intel EM64T 401 80.20 % 19276748 31534715 2664464
AMD x86_64 49 9.80 % 6793114 8991896 981621
Totals 500 100% 32434683.70 48470495.53 5131461

|Name CPU type Vendor

1 |Jaguar Opteron Cray

2 |Nebulae Xeon + Tesla Dawning

3 |Roadrunner Opteron + Cell IBM

4 |Kraken Opteron Cray

5 |Jugene PowerPC IBM

12

Pipelining

¢ Is used to speed up execution
¢ Second (independent) instruction can be started before first one
finishes

iIns.
iDecode

§Op .
i Fetch

Time

13

Example of a pipeline

¢ Imagine a loop
for (int i=0; i <102400; ++i)
a[i]=b[i]+c[i];

¢ Consecutive iterations are independent and can be executed in
parallel after unrolling

for (int i=0; i <102400; i+=4){
a[i]=b[i]+c[i];
a[i+l]=b[i+l]+c[i+1];
a[i+2]=b[i+2]+c[i+2];
a[i+3]=b[i+3]+c[i+3];

14

Branch prediction

¢ At each branch (i f-statement, ...) the pipelines stall
¢ Have to wait for end of execution before starting one of the branches
¢ Solution: branch prediction

¢ Predict (clever compiler, clever hardware) which branch is more likely
4 E.g. in loop will usually repeat the loop

¢ Start executing more likely branch
4 |f correct prediction: pipeline runs on without any cost
4 |f wrong prediction: abort pipeline and start right branch

Branch

Fetch | Decode | Operand Exec Write E

‘Guess | Fetch | Decode : Operdpd | Exec i Write E
Guess | Fetch | Decode\: Operand | Exec Write
Guess Fetch Decode : Operand Exec

Decode : Operand ‘

| Feten

Diagram of a PowerPC G4 CPU

I
! ion -a—pe| INStruction fetch | 4 ! -
| compl{ehon | Branchunit |_ : " |Instruction
: unit y - l cache
I
: Y Y : (32 KB)
I I
' SEQUENCER | 'y
| Dispatch unit BHT/BTIC | !
| UNIT |
! i .
I
| ¥ Y Y :
! | AltiVec issue | | GPR issue | | FPR issue }—:7
I * :
g S —— —_—
Y Y Y Y
- oml FPRs ™~
Sl 8o |2 ES— -
B 2] X |-k s LSU |~«—m| Rename FPU
Clo |v|an o gg—‘. buffers -
JEREIE I I R
Y vy

; _

| |

1 o \

I = I go ! Data cache t':‘r‘:g:;y

| [} o o ol 2 L

2 E|E|E|lwdS S - (32KB) sub-system

| S|o|&| | =2 !

: ! 2

L ALTIVECENGINE ______ i S
— 3

| Unified L2 cache (256 KB) and L3 cache tag control }— ©

T -
| System interface unit |

™ system bus

Summary of CPUs

¢ Several types of architectures
¢ CISC, RISC, GPUs

¢ Differences are disappearing:
¢ All modern CPUs are superscalar.
¢ They have SIMD units (e.g. SSE).
¢ They may internally convert instructions from CISC to RISC.

¢ Hybrid systems (CPU+GPU) will very likely be the future of high
performance computing

¢ We have very fast CPUs, but the rest of the system cannot keep
up with the speed

17

Moore’s law

¢ “The number of transistors on a chip doubles every 18 months”
¢ More transistors means smaller transistors
¢ Smaller transistors => shorter distances => faster signals
¢ Smaller transitors => fewer charges => faster switching
¢ Thus also the CPU speed increases exponentially

¢ Has worked for the past 30 years!

¢ How long will it continue?
¢ Current prototype chips at 10 GHz
¢ Insulating layers only 4 atoms thick!
¢ Can we still reduce the size??
¢ Moore’s law will probably stop working in the next decade
¢ Software optimization will become more important

18

Moore’s law for Intel CPUs

0/00/Transistor_Count_and_Moore%27s_Law_-_2008.svg 10/6/09 10:46 PM

http://upload i ia.org/wiki C

CPU Transistor Counts 1971-2008 & Moore’s Law

Dual-Core ltanium 2 @ ™ Quad-Core Itanium Tukwila

2,000,000,000 —
POWERS. ¥ GT200

1,000,000,000 — EG g oo
itanium 2 with 9MB cache 2 /l .
Core 2 Quad ,‘KIO
tanum 2@ BEIP 2O
100,000,000 — s
s .,' ®Barton gaon
€ i
% Curve shows ‘Moore’s Law’: i
(o] 10,000,000 — transistor count doubling R IS
8 every two years 7 aks
.9 L & Pentium
(2] .
2 1,000,000 — e
o .
= ssc 9’
.
100,000 — .
/igcaa
10,000 —
, ¥ 8080
2,300 —! 4004 ',‘ 8008

1971 1980 1990 2000 2008

Date of introduction

19

Moore’s law for supercomputers

o
@500 Performance Development
IOFEoEs EZIEE RN
o
10 PFlops .,.l" o #500
oo 175300TF o sum
1 PFlops oo J=R=R-§
= o
o pooo
100 TFlops .,.I-"" =
8 gt o oooa 24670 GF|
o oo
€ 10TAops| & ._.,l’. pod 5o
E \;'?,'.l J=N-N-§ unﬂn
e 1 TRops ¥ -0 a2
& S g
g 8oal o
100 GFiops {27 g @
po®
o
o
10 GFlops po®
< oo
A~ o
1 GFlops -Qg'n &
1UUMHOpSTI|'IIII|I|I|I|I|Illllllllllllllll
o« - w w0 - w (23] o pr— o o« <t uw w I~ w {27 o
o o o o (22 o o o o o o o o o o o o —
o o) o) o o) o) (23] o o o o o o o o o o o
— -— — — — — -— o o o o o o o o o o o
hitp://www .top500.org/

20

How about the other components of a computer?

¢ Transistor density doubles every 18 months

¢ PC speed doubles every 2-2.5 years
¢ Are now as fast as supercomputers were a decade ago

¢ Supercomputer speed doubles every year
¢ PCs will not catch up with supercomputers

¢ But the rest of the system does not catch up
¢ RAM speed increases slower
¢ Disk speed increases even slower

21

Memory versus CPU speed

¢ DRAM has gotten cheap over the past decades but not much
faster

10000 E T T T T | T T T T | T T T T | T =
- Memory vs. CPU perf. -
= o = CPU -
< 1000 &%
o - o = DRAM :
2 - :
) B o) -
sl - -
«
[B -
a O
A 100 — —
- O -
10 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1
1990 1995 2000 2005

Year

22

Memory (RAM)

¢ SRAM (static random access memory)
¢ Very fast access but very expensive
¢ Data stored in state of transistors (flip-flop)
¢ Data stays as long as there is power

¢ DRAM (dynamic random access memory)
¢ Much cheaper then SRAM but slower
¢ Data stored in tiny capacitor which discharge slowly
¢ Capacitors need to be recharged regularly (hence dynamic)

¢ SDRAM (synchronous dynamic random access memory)
¢ Variant of DRAM, with a clock synchronized with caches,
¢ allows faster reading of successive data

23

Faster RAM technologies

¢ DDR RAM (double data rate)

¢ Can send data twice per clock cycle
¢ Send data on rising and falling edge of clock signal

¢ DRDRAM (Rambus DRAM)

¢ Adds fast logic to RAM chips to allow faster data exchange between
CPU and memory

¢ For more information see http://rambus.org
¢ Market share negligible

¢ Interleaved memory systems
¢ Use more than one bank of memory chips
¢ Used in vector machines and most 64-bit systems

¢ Can read simultaneously from each bank
¢ increases bandwidth
¢ Does not change latency (access time)

24

Improving memory speed by using caches

¢ Are added to speed up memory access (Opteron Barcelona)
¢ Many GByte of slow DRAM
¢ 2 MByte of fast and expensive L3-Cache
¢ 512 kByte of even faster and more expensive L2-Cache per core

¢ 2x64 kByte of the fastest and most expensive L1-Cache (instruction
and data cache) per core

¢ Problems needing little memory will run faster!

25

Improving memory speed by using caches

Cycles Normalised

L1 cache 2 1
L2 cache 15 7.5
L3 cache 75 37.5
Other L1/12 130 65
Memory ~300 ~150
1-hop remote 13 190 95
2-hopremote 3 260 130

AMD “Barcelona” @ 2GHz

T. Roscoe, A. Baumann

26

How does a cache work?

¢ CPU requests a word (e.g. 4 bytes) from memory

¢ Afull “cache line” (Opteron: 64 bytes) is read from memory and stored
in the cache

¢ The first word is sent to the CPU

¢ CPU requests another word from memory

¢ Cache checks whether it has already read that part as part of the
previous cache line

¢ |f yes, it the word is sent quickly from cache to CPU
¢ If not, a new cache line is read

¢ Once the cache is full, the oldest data is overwritten

¢ [ocality of memory references are important for speed

27

Types of caches

¢ Direct mapped
¢ Each memory location can be stored only in one cache location

¢ “cache trashing” occurs if we access in strides of the cache size, always
replacing the previous date

¢ n-way associative

. Direct Mapped 2-Way Associative
¢ Each memory location Cache Fil Cache Fil
can be stored in n cache Main) M’:‘s‘;‘ry Cache
: Memo Cache
locations Index Memory Index Memory
¢ Better performance, more 0 [Index 0 0 Index 0, Way 0
expensive 2l 7 Index 1 1 Index 0, Way 1
T 7 7 Index 2 2 Index 1, Way 0
3 7 »| Index 3 3 Index 1, Way 1
.. 4 4
¢ Fully associative 5 5

’ EaCh memory |OC3.t|0n E::h lcation in main memory can be “E.:lch bcation in main memory can be
cached by just one cache bcation. cached by one of two cache bcations.
can be stored anywhere

¢ Best but most expensive

28

Exercises about caches

¢ Exercise 1:

¢ Write a program to measure the number and size of caches in your
machine

¢ Exercise 2 (bonus):

¢ Write a program to determine the type of associativity of your L1-
cache. Is it
¢ Direct mapped?
¢ n-way associative?
¢ Fully associative?

29

Virtual memory: memory is actually even slower

¢ What if more than one program runs on a machine?
¢ What if we need more memory than we have RAM?

¢ Solution 1: virtual memory
¢ Programs run in a “logical” address space
¢ Hardware maps “logical” to “physical” address

¢ Solution 2: swap space
¢ Some physical memory may be on a hard disk
¢ |If accessed it is first read from disk into memory
¢ This is even slower!

30

Virtual memory logic:

¢ Memory is organized in “pages” of e.g. 4 Kbyte

¢ Addresses are translated from logical to physical
address space

||

¢ Lookup in page table L1-cache
4 If in memory, access to memory | |
¢ If on disk, read from disk first (slow!!!) L2-cache
|
¢ Access to page table needs reading from L3-cache
memory
. . . = pee §:<5
¢ Solution: translation lookaside buffer (TLB) E table =
¢ |s a cache for the page table
] o memory
¢ ltis again important to keep memory references []
local disk
31
TLB/Page sizes
Architecture TLB Size Page Size TLB Coverage
VAX 64-256 512B 32-128kB
ia32 / x86 (typical) 32-32+64 4kB+4MB 128-128+256kB
MIPS 96-128 4kB-16 MB 384kB - ...
SPARC 64 8kB-4MB 512kB - ...
Alpha 32-128+128 8kB-4MB 256kB - ...
RS/6000 32+128 4kB 128+512kB
Powerg/Gg 128 4kB+16MB 512kB - ...
PA-8000 96+96 4kB-64MB
[tanium 64+96 4kB-4GB

Not grown much in 20 years!

T. Roscoe, A. Baumann

32

Virtual memory: the worst case

Request an address
Cache miss in L1
Cache miss in L2
Cache miss in L3
Lookup physical address
¢ Cache miss in TLB
¢ Request page table entry
¢ Load page table from memory (slow)
¢ Page fault in page table
¢ Store a page to disk (extremely slow)
¢ Create and initialize a new page (very slow)
¢ Load page from disk (extremely slow)
¢ Load value from memory (slow)

L AR R I N 2

¢ Try to reuse data as much as possible

||

L1-cache

| |

L2-cache

|

L3-cache

page
table

memory

| |

disk

33

