
Templates and generic programming	

 Week 3	

Programming techniques for scientific
simulations	

 1	

Templates and generic programming	

Improving on last week’s assignment	

 How did you calculate the machine precision?
 Did you just have a main() function

 Did you have three functions with different names?
epsilon_float()

epsilon_double()

epsilon_long_double()

 Did you have three functions with the same name?
epsilon(float x)
epsilon(double x)

epsilon(long double x)

 Or did you have just one function that could be used for any type?
epsilon()

Templates and generic programming	

 Week 3	

Programming techniques for scientific
simulations	

 2	

 Algorithms are usually very generic:
for min() all that is required is an order relation “<“

 Most programming languages require concrete types for the
function definition
 C:

int min_int(int a, int b) { return a<b ? a : b;}

float min_float (float a, float b) { return a<b ? a : b;}

double min_double (double a, double b) { return a<b ? a : b;}

…

 Fortran:
 MIN(), AMIN(), DMIN(), …

�

min(x,y) =
x if x < y
y otherwise

⎧
⎨
⎩

Generic algorithms versus concrete implementations	

 solves one problem immediately: we can use the same name
int min(int a, int b) { return a<b ? a : b;}

float min (float a, float b) { return a<b ? a : b;}

double min (double a, double b) { return a<b ? a : b;}

 Compiler chooses which one to use
min(1,3); // calls min(int, int)
min(1.,3.); // calls min(double, double)

 However be careful:
min(1,3.1415927); // Problem! which one?
min(1.,3.1415927); // OK
min(1,int(3.1415927)); // OK but does not make sense
or define new function double min(int,float);

Function overloading in C++	

Templates and generic programming	

 Week 3	

Programming techniques for scientific
simulations	

 3	

C++ versus C linkage	

 How can three different functions have the same name?
 Look at what the compiler does

cd PT
cvs update -d
cd week3
g++ -c -save-temps -O3 min.C

 Look at the assembly language file min.s and also at min.o
nm min.o

 The functions actually have different names!
 Types of arguments appended to function name

 C and Fortran functions just use the function name
 Can declare a function to have C-style name by using extern “C”
extern “C” { short min(short x, short y);}

Using macros (is dangerous)	

 We still need many functions (albeit with the same name)

 In C we could use preprocessor macros:
 #define min(A,B) (A < B ? A : B)

 However there are serious problems:
 No type safety
 Clumsy for longer functions
 Unexpected side effects:

min(x++,y++); // will increment twice!!!
 // since this is: (x++ < y++ ? x++ : y++)

 Look at it:
 c++ -E minmacro.C

Templates and generic programming	

 Week 3	

Programming techniques for scientific
simulations	

 4	

Generic algorithms using templates in C++	

 C++ templates allow a generic implementation:

 template <class T>
inline T min (T x, T y)

 {

 return (x < y ? x : y);

 }

 Using templates we get functions that
 work for many types T
 are optimal and efficient since they can be inlined
 are as generic and abstract as the formal definition
 are one-to-one translations of the abstract algorithm

min(x,y) is
x if x < y
y otherwise

⎧
⎨
⎩

Usage Causes Instantiation	

template <class T>
T min(T x, T y)
{
 return x < y ? x : y;
}

int x = min(3, 5);
int y = min(x, 100);

float z = min(3.14159f, 2.7182f);

// T is int

int min<int>(int x, int y)
{
 return x < y ? x : y;
}

// T is float
float min<float>(float x, float y)
{
 return x < y ? x : y;
}

Templates and generic programming	

 Week 3	

Programming techniques for scientific
simulations	

 5	

Discussion	

“What is Polymorphism?”

Our definition:
 Using many different types through the same interface

Generic programming process	

 Identify useful and efficient algorithms

 Find their generic representation
 Categorize functionality of some of these algorithms
 What do they need to have in order to work in principle

 Derive a set of (minimal) requirements that allow these algorithms
to run (efficiently)
 Now categorize these algorithms and their requirements
 Are there overlaps, similarities?

 Construct a framework based on classifications and requirements

 Now realize this as a software library

Templates and generic programming	

 Week 3	

Programming techniques for scientific
simulations	

 6	

Generic Programming Process: Example	

 (Simple) Family of Algorithms: min, max
 Generic Representation

 Minimal Requirements?
 Find Framework: Overlaps, Similarities?

min(x, y) =
x if x < y
y otherwise

⎧
⎨
⎩

max(x, y) =
x if x > y
y otherwise

⎧
⎨
⎩

Generic Programming Process: Example	

 (Simple) Family of Algorithms: min, max
 Generic Representation

 Minimal Requirements yet?
 Find Framework: Overlaps, Similarities?

min(x, y) =
x if x < y
y otherwise

⎧
⎨
⎪

⎩⎪

max(x, y) =
x if y < x
y otherwise

⎧
⎨
⎪

⎩⎪

Templates and generic programming	

 Week 3	

Programming techniques for scientific
simulations	

 7	

Generic Programming Process: Example	

 Possible Implementation

template <class T>
T min(T x, T y)
{
 return x < y ? x : y;
}

 What are the Requirements on T?
 operator < , result convertible to bool

Generic Programming Process: Example	

 Possible Implementation

template <class T>
T min(T x, T y)
{
 return x < y ? x : y;
}

 What are the Requirements on T?
 operator < , result convertible to bool
 Copy construction: need to copy the result!

Templates and generic programming	

 Week 3	

Programming techniques for scientific
simulations	

 8	

Generic Programming Process: Example	

 Possible Implementation

template <class T>
T const& min(T const& x, T const& y)
{
 return x < y ? x : y;
}

 What are the Requirements on T?
 operator < , result convertible to bool
 that’s all!

The problem of different types: manual solution	

 What if we want to call min(1,3.141)?

template <class R,U,T>
R const& min(U const& x, T const& y)
{
 return static_cast<R>(x < y ? x : y);
}

  Now we need to specify the first argument since it
cannot be deduced.
 min<double>(1,3.141);
 min<int>(3,4);

Templates and generic programming	

 Week 3	

Programming techniques for scientific
simulations	

 9	

Concepts	

 A concept is a set of requirements, consisting of valid expressions,
associated types, invariants, and complexity guarantees.

 A type that satisfies the requirements is said to model the concept.

 A concept can extend the requirements of another concept, which is
called refinement.

 A concept is completely specified by the following:

 Associated Types: The names of auxiliary types associated with the
concept.

 Valid Expressions: C++ expressions that must compile successfully.

 Expression Semantics: Semantics of the valid expressions.

 Complexity Guarantees: Specifies resource consumption (e.g.,
execution time, memory).

 Invariants: Pre and post-conditions that must always be true.

Assignable concept	

 Notation
 X A type that is a model of Assignable
 x, y Object of type X

Expression! Return type! Semantics! Postcondition!

x=y;" X&" Assignment" X is equivalent to y"

swap(x,y)" void" Equivalent to"
{ "
 X tmp = x; "
 x = y; "
 y = tmp; "
}" "

Templates and generic programming	

 Week 3	

Programming techniques for scientific
simulations	

 10	

CopyConstructible concept	

 Notation
 X A type that is a model of CopyConstructible
 x, y Object of type X

Expression! Return type! Semantics! Postcondition!
X(y)" X&" Return value is

equivalent to y"
X x(y);" Same as "

X x;"
x=y;"

x is equivalent to y"

X x=y;" Same as "
X x;"
x=y;"

Documenting a template function	

 In addition to
 Preconditions
 Postconditions
 Semantics
 Exception guarantees

 The documentation of a template function must include

 Concept requirements on the types

 Note that the complete source code of the template function must
be in a header file

Templates and generic programming	

 Week 3	

Programming techniques for scientific
simulations	

 11	

Argument Dependent Lookup	

 Also known as Koenig Lookup
 Applies only to unqualified calls

 Examines “associated classes
and namespaces”

 Adds functions to overload set
 Originally for operators, e.g.

operator<<(std::ostream&, T);

namespace lib {	

	

 template <class T> T abs(T x) 	

	

 	

 { return x > 0 ? x : -x; }	

	

 template <class T> 	

	

 T compute(T x) {	

	

 	

 …	

	

 	

 return abs(x);	

	

 }	

}	

namespace user {	

	

 class Num {};	

	

 Num abs(Num);	

	

 Num x = lib::compute(Num());	

}	

?

abs(x)	

 	

 	

 std::abs(x)	

Examples: iterative algorithms for linear systems	

  Iterative template library (ITL)
 Rick Lee et al, Indiana

 generic implementation of
iterative solvers for linear
systems from the “Templates”
book

  Iterative Eigenvalue Template
Library (IETL)
 Prakash Dayal et al, ETH

 generic implementation of
iterative eigensolvers. partially
implements the eigenvalue
 templates book

Templates and generic programming	

 Week 3	

Programming techniques for scientific
simulations	

 12	

The power method	

  Is the simplest eigenvalue solver
 returns the largest eigenvalue and corresponding eigenvector

 Only requirements:
 A is linear operator on a Hilbert space
 Initial vector y is vector in the same Hilbert space

 Can we write the code with as few constraints?

�

yn+1 = Axn

Generic implementation of the power method	

 A generic implementation is possible

OP A;

V v,y;

T theta, tolerance, residual;

…

do {

 v = y / two_norm(y); // line (3)
 y = A * v; // line (4)
 theta = dot(v,y); // line (5)
 v *= theta; // line (6)
 v -= y;
 residual = two_norm(v); // ||θ v - Av||
} while(residual>tolerance*abs(theta));

Templates and generic programming	

 Week 3	

Programming techniques for scientific
simulations	

 13	

Concepts for the power method	

 The triple of types (T,V,OP) models the Hilbertspace concept if

 T must be the type of an element of a field
 V must be the type of a vector in a Hilbert space over that field
 OP must be the type of a linear operator in that Hilbert space

 All the allowed mathematical operations in a Hilbert space have to exist:
 Let v, w be of type V
 Let r, s of type T
 Let a be of type OP.
 The following must compile and have the same semantics as in the

mathematical concept of a Hilbert space:
r+s, r-s, r/s, r*s, -r have return type T
v+w, v-w, v*r, r*v, v/r have return type V
a*v has return type V
two_norm(v) and dot(v,w) have return type T
…

 Exercise: complete these requirement

