Improving on last week’s assignment

◆ How did you calculate the machine precision?
 ◆ Did you just have a main() function

◆ Did you have three functions with different names?

 epsilon_float()
 epsilon_double()
 epsilon_long_double()

◆ Did you have three functions with the same name?

 epsilon(float x)
 epsilon(double x)
 epsilon(long double x)

◆ Or did you have just one function that could be used for any type?

 epsilon()
Generic algorithms versus concrete implementations

- Algorithms are usually very generic:
 for min() all that is required is an order relation “<”

 \[
 \min(x, y) = \begin{cases}
 x & \text{if } x < y \\
 y & \text{otherwise}
 \end{cases}
 \]

- Most programming languages require concrete types for the function definition

 - C:
    ```
    int min_int(int a, int b) { return a<b ? a : b;}
    float min_float (float a, float b) { return a<b ? a : b;}
    double min_double (double a, double b) { return a<b ? a : b;}
    ... 
    ```

 - Fortran:
    ```
    \text{MIN()}, \text{AMIN()}, \text{DMIN()}, ...
    ```

Function overloading in C++

- solves one problem immediately: we can use the same name

  ```
  int min(int a, int b) { return a<b ? a : b;}
  float min(float a, float b) { return a<b ? a : b;}
  double min(double a, double b) { return a<b ? a : b;}
  ```

- Compiler chooses which one to use

  ```
  min(1,3); // calls \text{min}(int, int)
  min(1.,3.); // calls \text{min}(double, double)
  ```

- However be careful:

  ```
  min(1,3.1415927); // Problem! which one?
  min(1.,3.1415927); // OK
  min(1,int(3.1415927)); // OK but does not make sense
  or define new function \text{double min}(int, float);
  ```
C++ versus C linkage

How can three different functions have the same name?
- Look at what the compiler does
  ```
cd PT
  cvs update -d
  cd week3
  g++ -c -save-temps -O3 min.C
  ```
- Look at the assembly language file min.s and also at min.o
  ```
  nm min.o
  ```

The functions actually have different names!
- Types of arguments appended to function name

C and Fortran functions just use the function name
- Can declare a function to have C-style name by using `extern "C"
  ```
  extern "C" { short min(short x, short y);
  ```

Using macros (is dangerous)

- We still need many functions (albeit with the same name)
- In C we could use preprocessor macros:
  ```
  #define min(A,B) (A < B ? A : B)
  ```
- However there are serious problems:
 - No type safety
 - Clumsy for longer functions
 - Unexpected side effects:
    ```
    min(x++,y++); // will increment twice!!!
    // since this is: (x++ < y++ ? x++ : y++)
    ```
- Look at it:
  ```
  c++ -E minmacro.C
  ```
Generic algorithms using templates in C++

- C++ templates allow a generic implementation:

  ```c++
  template <class T>
  inline T min (T x, T y)
  {
    return (x < y ? x : y);
  }
  ```

- Using templates we get functions that
 - work for many types T
 - are optimal and efficient since they can be inlined
 - are as generic and abstract as the formal definition
 - are one-to-one translations of the abstract algorithm

Usage Causes Instantiation

```c++
template <class T>
T min(T x, T y)
{
  return x < y ? x : y;
}
```

// T is int

```c++
int x = min(3, 5);
int y = min(x, 100);
```

// T is float

```c++
float z = min(3.14159f, 2.7182f);
```
Discussion

“What is Polymorphism?”

Our definition:

Using many different types through the same interface

Generic programming process

- Identify useful and efficient algorithms
- Find their generic representation
 - Categorize functionality of some of these algorithms
 - What do they need to have in order to work in *principle*
- Derive a set of (minimal) requirements that allow these algorithms to run (efficiently)
 - Now categorize these algorithms and their requirements
 - Are there overlaps, similarities?
- Construct a framework based on classifications and requirements
- Now realize this as a software library
Generic Programming Process: Example

- (Simple) Family of Algorithms: min, max
- Generic Representation

\[
\begin{align*}
\text{min}(x, y) &= \begin{cases}
x & \text{if } x < y \\
y & \text{otherwise}
\end{cases} \\
\text{max}(x, y) &= \begin{cases}
x & \text{if } x > y \\
y & \text{otherwise}
\end{cases}
\end{align*}
\]

- Minimal Requirements?
- Find Framework: Overlaps, Similarities?
Templates and generic programming

Week 3

Programming techniques for scientific simulations

Generic Programming Process: Example

Possible Implementation

```cpp
template <class T>
T min(T x, T y)
{
    return x < y ? x : y;
}
```

What are the Requirements on T?

- **operator <**, result convertible to bool

Generic Programming Process: Example

Possible Implementation

```cpp
template <class T>
T min(T x, T y)
{
    return x < y ? x : y;
}
```

What are the Requirements on T?

- **operator <**, result convertible to bool
- **Copy construction**: need to copy the result!
Generic Programming Process: Example

◆ Possible Implementation

```cpp
template <class T>
T const& min(T const& x, T const& y)
{
    return x < y ? x : y;
}
```

◆ What are the Requirements on T?
 ◆ operator < , result convertible to bool
 ◆ that's all!

The problem of different types: manual solution

◆ What if we want to call min(1,3.141)?

```cpp
template <class R,U,T>
R const& min(U const& x, T const& y)
{
    return static_cast<R>(x < y ? x : y);
}
```

◆ Now we need to specify the first argument since it cannot be deduced.
  ```cpp```
  ```
 min<double>(1,3.141);
 min<int>(3,4);
  ```
Concepts

- A concept is a set of requirements, consisting of valid expressions, associated types, invariants, and complexity guarantees.
- A type that satisfies the requirements is said to model the concept.
- A concept can extend the requirements of another concept, which is called refinement.
- A concept is completely specified by the following:
  - Associated Types: The names of auxiliary types associated with the concept.
  - Valid Expressions: C++ expressions that must compile successfully.
  - Expression Semantics: Semantics of the valid expressions.
  - Complexity Guarantees: Specifies resource consumption (e.g., execution time, memory).
  - Invariants: Pre and post-conditions that must always be true.

Assignable concept

- Notation
  - X: A type that is a model of Assignable
  - x, y: Object of type X

<table>
<thead>
<tr>
<th>Expression</th>
<th>Return type</th>
<th>Semantics</th>
<th>Postcondition</th>
</tr>
</thead>
<tbody>
<tr>
<td>x=y;</td>
<td>X&amp;</td>
<td>Assignment</td>
<td>X is equivalent to y</td>
</tr>
<tr>
<td>swap(x,y)</td>
<td>void</td>
<td>Equivalent to</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>{</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>X tmp = x;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>x = y;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>y = tmp;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>}</td>
<td></td>
</tr>
</tbody>
</table>
### CopyConstructible concept

**Notation**
- $X$ A type that is a model of CopyConstructible
- $x, y$ Object of type $X$

<table>
<thead>
<tr>
<th>Expression</th>
<th>Return type</th>
<th>Semantics</th>
<th>Postcondition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X(y)$</td>
<td>$X$</td>
<td></td>
<td>Return value is equivalent to $y$</td>
</tr>
<tr>
<td>$X x(y);$</td>
<td></td>
<td>Same as</td>
<td>$x$ is equivalent to $y$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$X x;$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$x=y;$</td>
<td></td>
</tr>
<tr>
<td>$X x=y;$</td>
<td></td>
<td>Same as</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$X x;$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$x=y;$</td>
<td></td>
</tr>
</tbody>
</table>

### Documenting a template function

- In addition to
  - Preconditions
  - Postconditions
  - Semantics
  - Exception guarantees

- The documentation of a template function must include
  - Concept requirements on the types

- Note that the complete source code of the template function must be in a header file
**Argument Dependent Lookup**

- Also known as Koenig Lookup
- Applies only to unqualified calls
- Examines “associated classes and namespaces”
- Adds functions to overload set
- Originally for operators, e.g., `operator<<(std::ostream&, T);

```
namespace lib {
 template <class T> T abs(T x) {
 return x > 0 ? x : -x;
 }

 template <class T> T compute(T x) {
 ...
 return abs(x);
 }
}
```

```
namespace user {
 class Num {};
 Num abs(Num);
 Num x = lib::compute(Num());
}
```

**Examples: iterative algorithms for linear systems**

- Iterative template library (ITL)
  - Rick Lee et al, Indiana
- generic implementation of iterative solvers for linear systems from the “Templates” book
- Iterative Eigenvalue Template Library (IETL)
  - Prakash Dayal et al, ETH
- generic implementation of iterative eigensolvers. partially implements the eigenvalue templates book
The power method

- Is the simplest eigenvalue solver
- returns the largest eigenvalue and corresponding eigenvector

Algorithm 4.1: Power Method for HEP
(1) start with vector \( y = z \), the initial guess
(2) for \( k = 1, 2, \ldots \)
(3) \( v = y / ||y||_2 \)
(4) \( y = A v \)
(5) \( \theta = v^* y \)
(6) if \( ||y - \theta v||_2 \leq \epsilon_M |\theta| \), stop
(7) end for
(8) accept \( \lambda = \theta \) and \( x = v \)

- Only requirements:
  - \( A \) is linear operator on a Hilbert space
  - Initial vector \( y \) is vector in the same Hilbert space

- Can we write the code with as few constraints?

Generic implementation of the power method

- A generic implementation is possible

```cpp
OP A;
V v, y;
T theta, tolerance, residual;
...
do {
 v = y / two_norm(y); // line (3)
 y = A * v; // line (4)
 theta = dot(v, y); // line (5)
 v *= theta; // line (6)
 v -= y;
 residual = two_norm(v); // ||\theta v - Av||
} while(residual>tolerance*abs(theta));
```
Concepts for the power method

◆ The triple of types (T,V,OP) models the Hilbert space concept if
  ◆ T must be the type of an element of a field
  ◆ V must be the type of a vector in a Hilbert space over that field
  ◆ OP must be the type of a linear operator in that Hilbert space

◆ All the allowed mathematical operations in a Hilbert space have to exist:
  ◆ Let v, w be of type V
  ◆ Let r, s of type T
  ◆ Let a be of type OP.
  ◆ The following must compile and have the same semantics as in the mathematical concept of a Hilbert space:
    r+s, r-s, r/s, r*s, -r have return type T
    v+w, v-w, v+r, r+v, v/r have return type V
    a*v has return type V
    two_norm(v) and dot(v,w) have return type T
    ...
  ◆ Exercise: complete these requirement