
Monte Carlo Integration
and Random Numbers

Higher dimensional integration

! Simpson rule with M evaluations in
!one dimension the error is order M-4

!d dimensions the error is order M-4/d

! In general an order-n scheme in one dimensions is order-n/d in d
dimensions

! The phase space of physical N-body problems are usually very
high-dimensional
!classical mechanics: d=6N (positions and velocities)
!classical spin problem: d=2N (two angles)
!quantum spin-S problem: d=(2S+1)N

Throwing stones into a pond

! How can we estimate the size of a pond with stones?
! How can we calculate π by throwing stones?

! Let us take a square surrounding the area we want to measure:

! Choose M random points and count how many lie in the interesting
area

! Again we have a Mathematica notebook for this problem

π/4

Monte Carlo integration

! Consider an integral

! Instead of evaluating it at equally spaced points evaluate it at M
points xi chosen randomly in !:

! This is a Monte Carlo estimate for the integral

! The error is statistical:

! In d>8 dimensions Monte Carlo is better than Simpson!

f = f (x)dx

!
" dx

!
"

f !

1
M

f (r x i)
i=1

M

"

! =
Var f
M "1

#M"1 / 2

Var f = f 2 " f 2

Importance sampling

! Simple sampling as discussed before is slow if the variance is big
(function large in some regions, small in others)

! Then importance sampling is better. We choose points not
uniformly but with probability p(x):

! The error is now determined by the variance of f/p
! We want to choose p similar to f and such that p-distributed

random numbers are easily available
! Example can also be found on the Mathematica file

f =

f
p

p

:= f (x)
p(x)

p(x)dx
!
" dx

!
"

f (x) = exp(!x 2) p(x) = exp(!x)

Random numbers

Random numbers

! Real random numbers are hard to obtain
!cosmic radiation
!atmospheric noise
!used mainly for one-time encryption keys
!New: Swss-made quantum random number generators

! IDquantique in Geneva

! Pseudo random numbers
!Get random numbers by an algorithm
!generating random numbers algorithmically is a sin!

!not random at all
!completely deterministic

!maybe they look random enough for our purposes
(as long as the algorithm is not known)

Random numbers

! Real random numbers are hard to obtain
!cosmic radiation
!atmospheric noise
!used mainly for one-time encryption keys
!New: Swss-made quantum random number generators

! IDquantique in Geneva

! Pseudo random numbers
!Get random numbers by an algorithm
!generating random numbers algorithmically is a sin!

!not random at all
!completely deterministic

!maybe they look random enough for our purposes
(as long as the algorithm is not known)

! Never trust pseudo random numbers however!

Linear congruential generators

! are of the simple form xn+1=f(xn), with f usually a linear function
! A good choice is the GGL generator

with a = 16807, c = 0, m = 231-1, x0=667790
! quality depends sensitively on a,c,m and the seed value x0

! Periodicity is a problem with such 32-bit generators
!The sequence repeats identically after 231-1 iterations
!With modern computers that is just a few seconds!
!Nowadays such 32-bit generators should not be used!

xn +1 = (axn + c)modm

Lagged Fibonacci generators

!

! Good choices for 64-bit floating point numbers (m=1)
! (55,24,+)
! (607,273,+)
! (2281,1252,+)
! (9689,5502,+)
! (44497,23463,+)

! Seed blocks usually generated by linear congruential
! Has very long periods since large block of seeds
! no data dependencies for min(p,q) iterations

!can be vectorized on vector CPUs
!can be pipelined on scalar CPUs

xn = xn! p " xn! qmodm

Are these numbers really random?

Are these numbers really random?

! No!

Are these numbers really random?

! No!
! Are they random enough?

!Maybe?

Are these numbers really random?

! No!
! Are they random enough?

!Maybe?
! How can we test?

!Statistical tests for distribution
!Statistical tests for short time correlations
!Statistical tests for long time correlations
!…

Are these numbers really random?

! No!
! Are they random enough?

!Maybe?
! How can we test?

!Statistical tests for distribution
!Statistical tests for short time correlations
!Statistical tests for long time correlations
!…

! Are these tests enough?
!No! Your calculation could depend in a subtle way on hidden

correlations!

Are these numbers really random?

! No!
! Are they random enough?

!Maybe?
! How can we test?

!Statistical tests for distribution
!Statistical tests for short time correlations
!Statistical tests for long time correlations
!…

! Are these tests enough?
!No! Your calculation could depend in a subtle way on hidden

correlations!
! What is the ultimate test?

!Run your simulation with various random number generators and
compare the results

Easiest: graphical

! Before discussing statistical tests there is a simple first tool:
!Create random pairs (x,y) and plot them
!Create random triples (x,y,z) and plot them

! Can you see correlations?

! A Mathematica Notebook for these plots is on the web page of this
course

Non-uniform random numbers

! we found ways to generate pseudo random numbers u in the
interval [0,1[

! How do we get other uniform distributions?
!uniform in [a,b[: a+(b-a) u

! Other distributions:
! inversion of integrated distribution
!acceptance-rejection method

The probability density function of a distribution

! The probability density function p(x) Gives the probability of finding
a number in an infinitesimal interval dx around x

! The probability of finding a number x in an interval [a,b[is

! The integrated probability function P(x) is the integral of p(x)

P(x) = p(t)dt

!"

x

#

P[a ! x < b] = p(x)dx

a

b

"

Non-uniform distributions

! How can we get a random number x distributed with f(x) in the
interval [a,b[from a uniform random number u?

! Look at probabilities:

! This method is feasible if the integral can be inverted easily
!exponential distribution f(x)=" exp(-"x)
!can be obtained from uniform by x=-1/" ln(1-u)

P[x < y] = f (t)dt =: F(y) !
a

y

" P[u < F(y)]

u = F(x)
x = F $1(u)

Normally distributed numbers

! The normal distribution

can be easily integrated in 2 dimensions

! We can obtain two normally distributed numbers from two uniform
ones (Box-Muller method)

f (x) =

1

2!
exp "x2 / 2()

n1 = !2 ln(1 ! u1) sinu2
n2 = !2 ln(1 ! u1) cosu2

Uniform random numbers on N-sphere

! random points s on the surface of an N-sphere
! using acceptance-rejectance

!get uniform random vector x with each component in [-1,1[
! if norm is greater then one choose new one
!normalize length to one

! using Box-Muller
!start with uniform random vector x
!use Box-Muller to get normally distributed vector n
!normalize the length to one: the angles are uniformly distributed

! first method better only for very small N

Acceptance-rejection method

! If the integral of the distribution function f cannot be inverted easily
! Look for a simpler distribution h that bounds f:

f(x) < "h(x)

! Repeat
!Choose one h-distributed number x
!Choose a uniform number u

! Until u < f(x)/ "h(x)

! Needs a good guess h
! Where that is not possible numerical inversion of integral

might be faster!

The Boost random library

! Has been accepted into the next revision of the C++ standard

! For now get it from Boost: http://www.boost.org/

! It contains
!Random number generators
!Distribution functions

Generators in the Boost random library

! All generators have members such as:
class RNG {
 public:
 typedef … result_type; // can be int, double,…
 RNG();

 void seed(); // the default seed
 template <class Iterator>
 Iterator seed(Iterator first, Iterator last);
 // seed from a range of unsigned int

 result_type min() const;
 result_type max() const;

 result_type operator(); // get the next random number
};

! They can be uniform floating point or integer generators with range
between min() and max()

Useful and good generators

! #include <boost/random.hpp>

// Mersenne-twisters (modern, improved lagged Fibonacci
generators)
boost::mt11213b rng1;
boost::mt19937 rng2;

// standard lagged Fibonacci generators
boost::lagged_fibonacci607 rng3;
boost::lagged_fibonacci1279 rng4;
boost::lagged_fibonacci2281 rng5;

// linear congruential generators
boost::minstd_rand0 rng6;
boost::minstd_rand rng7;

! Read the documentation for more generators and details

Distributions in the Boost random library

! Uniform distributions
! Integer: boost::uniform_int<int> dist1(a,b)
! Floating point: boost::uniform_real<double> dist2(a,b)

! Exponential distribution

! boost::exponential_distribution<double> dist3(lambda)

! Normal distribution

! boost::normal_distribution<double> dist4(mu,sigma)

! Read the documentation for more distributions and details

p(x) =

1
!

exp("!x)

f (x) =

1

2!
exp "(x " µ)2 / 2# 2()

Combining generators with distributions

! Is done using boost::variate_generator

// define the distribution
boost::normal_distribution<double> dist(0.,1.);

// define the random number generator engine
boost::mt19937 engine;

// create a normally distributed generator
boost::variate_generator<boost::mt19937&,
 boost::normal_distribution<double> >
 rng(engine,dist);

// use it
 for (int i=0;i<100;++i)
 std::cout << rng() << “\n”;

! Read the documentation for more details

