Monte Carlo Integration
and Random Numbers

Higher dimensional integration

@ Simpson rule with M evaluations in
@ one dimension the error is order M4
@ d dimensions the error is order M4d

@ In general an order-n scheme in one dimensions is order-n/din d
dimensions

® The phase space of physical N-body problems are usually very
high-dimensional
@ classical mechanics: d=6N (positions and velocities)
@ classical spin problem: d=2N (two angles)
€ guantum spin-S problem: d=(2S+1)N

Throwing stones into a pond

€ How can we estimate the size of a pond with stones?
How can we calculate 1t by throwing stones?

¥ Let us take a square surrounding the area we want to measure:

/4

@ Choose Mrandom points and count how many lie in the interesting
area

Again we have a Mathematica notebook for this problem

Monte Carlo integration

% Consider an integral <f> =ff(x)dx fdx

Q Q
@ Instead of evaluating it at equally spaced points evaluate it at M
points x; chosen randomly in Q:

This is a Monte Carlo estimate for the integral

® The error is statistical: Var 7

Az XS a2

M -1
Var £ = (77 (1Y

@ In &>8 dimensions Monte Carlo is better than Simpson!

Importance sampling

Simple sampling as discussed before is slow if the variance is big
(function large in some regions, small in others)

@ Then importance sampling is better. We choose points not
uniformly but with probability p(x):

= A = TAC), x)dx | [dx
) <p> Lo ™ M/i

Q

@ The error is now determined by the variance of f/p

€ We want to choose p similar to fand such that p-distributed
random numbers are easily available

€ Example can also be found on the Mathematica file

f(x) = exp(=x?) p(x) = exp(-x)

Random numbers

Random numbers

€ Real random numbers are hard to obtain
@ cosmic radiation
@ atmospheric noise
@ used mainly for one-time encryption keys

@ New: Swss-made quantum random number generators
@ |Dquantique in Geneva

Pseudo random numbers
@ Get random numbers by an algorithm

@ generating random numbers algorithmically is a sin!
@ not random at all
@ completely deterministic

€ maybe they look random enough for our purposes
(as long as the algorithm is not known)

Random numbers

Real random numbers are hard to obtain
@ cosmic radiation
@ atmospheric noise
@ used mainly for one-time encryption keys

@ New: Swss-made quantum random number generators
@ IDguantique in Geneva

Pseudo random numbers
@ Get random numbers by an algorithm

@ generating random numbers algorithmically is a sin!
@ not random at all
@ completely deterministic

€ maybe they look random enough for our purposes
(as long as the algorithm is not known)

@ Never trust pseudo random numbers however!

Linear congruential generators

are of the simple form x,, ,=f(x,), with f usually a linear function
@ A good choice is the GGL generator

x,., =(ax, +c)modm

with a = 16807, ¢ =0, m = 231-1, x,=667790
¢ quality depends sensitively on a,c,m and the seed value x,

@ Periodicity is a problem with such 32-bit generators
@ The sequence repeats identically after 231-1 iterations
€ With modern computers that is just a few seconds!

@ Nowadays such 32-bit generators should not be used!

Lagged Fibonacci generators

4
X, =x, ,®x,_ modm
© Good choices for 64-bit floating point numbers (m=1)
@ (55,24,+)
® (607,273,+)
® (2281,1252,+)
 (9689,5502,+)
€ (44497,23463,+)

¥ Seed blocks usually generated by linear congruential
@ Has very long periods since large block of seeds
© no data dependencies for min(p,q) iterations

@ can be vectorized on vector CPUs

@ can be pipelined on scalar CPUs

Are these numbers really random?

Are these numbers really random?

¢ No!

Are these numbers really random?

¢ No!
@ Are they random enough?
€ Maybe?

Are these numbers really random?

% No!
@ Are they random enough?
€ Maybe?
© How can we test?
@ Statistical tests for distribution
® Statistical tests for short time correlations

® Statistical tests for long time correlations
L

Are these numbers really random?

% No!

@ Are they random enough?
€ Maybe?

© How can we test?
@ Statistical tests for distribution
® Statistical tests for short time correlations
Statistical tests for long time correlations
®..

@ Are these tests enough?

@ No! Your calculation could depend in a subtle way on hidden
correlations!

Are these numbers really random?

% No!

@ Are they random enough?
€ Maybe?

€ How can we test?
@ Statistical tests for distribution
Statistical tests for short time correlations
® Statistical tests for long time correlations
L

@ Are these tests enough?

@ No! Your calculation could depend in a subtle way on hidden
correlations!

® What is the ultimate test?

@ Run your simulation with various random number generators and
compare the results

Easiest: graphical

Before discussing statistical tests there is a simple first tool:
@ Create random pairs (x,y) and plot them
@ Create random triples (x,y,z) and plot them

Can you see correlations?

€ A Mathematica Notebook for these plots is on the web page of this
course

Non-uniform random numbers

€ we found ways to generate pseudo random numbers u in the
interval [0,1]

© How do we get other uniform distributions?
@ uniform in [a,b[: a+(b-a) u

Other distributions:
@ inversion of integrated distribution
@ acceptance-rejection method

The probability density function of a distribution

@ The probability density function p(x) Gives the probability of finding
a number in an infinitesimal interval dx around x

@ The probability of finding a number x in an interval [a.b[is

Pla<x<b]= fp(x)dx

@ The integrated probability function P(x) is the integral of p(x)

P(x) = fp(t)dt

Non-uniform distributions

@ How can we get a random number x distributed with f{x) in the
interval [a,b] from a uniform random number u?
@ Look at probabilities:

Plx < y]= [f()dt = F(y) =Plu < F(y)]

=u = F(x)
= x=F ' (u)
This method is feasible if the integral can be inverted easily

@ exponential distribution f(x)=A exp(-Ax)
@ can be obtained from uniform by x=-1/A In(1-u)

Normally distributed numbers

© The normal distribution
1

f(X)=\/Z

can be easily integrated in 2 dimensions

exp(—x2 /2)

€ We can obtain two normally distributed numbers from two uniform
ones (Box-Muller method)

n, =J-2In(l - u,)sinu,
n, = J-2In(l -) cosu,

Uniform random numbers on N-sphere

random points s on the surface of an N-sphere

@ using acceptance-rejectance
@ get uniform random vector x with each component in [-1,1]
@ if norm is greater then one choose new one
® normalize length to one

@ using Box-Muller
@ start with uniform random vector x
@ use Box-Muller to get normally distributed vector n
® normalize the length to one: the angles are uniformly distributed

@ first method better only for very small N

Acceptance-rejection method

@ If the integral of the distribution function f cannot be inverted easily
@ Look for a simpler distribution h that bounds f:
f(x) < Ah(x)

® Repeat
@ Choose one h-distributed number x
@ Choose a uniform number u

@ Until u< f(x)/Ah(x)

© Needs a good guess h

€ Where that is not possible numerical inversion of integral
might be faster!

The Boost random library

Has been accepted into the next revision of the C++ standard

@ For now get it from Boost: http://www.boost.org/

@ It contains
€ Random number generators
@ Distribution functions

Generators in the Boost random library

@ All generators have members such as:
class RNG {

public:
typedef .. result type; //can be int, double,...
RNG();
void seed(); //the default seed

template <class Iterator>
Iterator seed(Iterator first, Iterator last);
/I seed from a range of unsigned int

result type min() const;
result type max() const;

result type operator(); // getthe next random number
}i
@ They can be uniform floating point or integer generators with range
between min () and max ()

Useful and good generators

@ #include <boost/random.hpp>

/I Mersenne-twisters (modern, improved lagged Fibonacci
generators)

boost::mt11213b rngl;

boost::mt19937 rng2;

/l standard lagged Fibonacci generators

boost::lagged fibonacci607 rng3;
boost::lagged fibonaccil279 rng4;
boost::lagged fibonacci2281 rng5;

/l'linear congruential generators

boost::minstd rand0 rngé6;
boost::minstd rand rng7;

© Read the documentation for more generators and details

Distributions in the Boost random library

@ Uniform distributions
@ Integer: boost: :uniform int<int> distl(a,b)
@ Floating point: boost: :uniform real<double> dist2(a,b)

9 Exponential distribution

PX) = S exp(-A)

@ boost::exponential distribution<double> dist3(lambda)

© Normal distribution |
f(x)= exp|-(x - u)*/20°
N2 ()

® boost::normal distribution<double> dist4(mu,sigma)

® Read the documentation for more distributions and details

Combining generators with distributions

@ Is done using boost: :variate generator

/l define the distribution
boost::normal distribution<double> dist(0.,1.);

/I define the random number generator engine
boost::mt19937 engine;

// create a normally distributed generator
boost::variate generator<boost::mt19937¢,
boost::normal distribution<double> >

rng(engine,dist);

// use it

for (int i=0;i<100;++1i)
std::cout << rng() << “\n”;

©® Read the documentation for more details

