
Optimization	
 Week 10	


Programming techniques for scientific 
simulations	
 1	


To code or not to code?	


Programming techniques – week 10 
 

Optimization and numerical libraries 

Optimization	


 First rule: Do not optimize!"
 What if the program is too slow?"

 find optimal algorithm"
 use libraries"

 What if the program is still too slow?"
 use profiling to determine which parts are slow"
 investigate slow part and check that data structures are optimal"

 are arrays, lists or trees better?"

 is the algorithm optimal?"
 check literature for better algorithms"
 use libraries"

 only then think about optimizing"
 Consider parallelization or vectorization"



Optimization	
 Week 10	


Programming techniques for scientific 
simulations	
 2	


Profiling	


  is used top determine how much time is spent in which program 
parts"

 Three easy steps:"
 compile the program with the -p option"
 run the program"
 use prof to look at the performance data"

 Alternative using gprof:"
 compile with the -pg option"
 run the program"
 use gprof to look at the performance data"
 includes time spent in called functions"

 See the man pages for details about these programs"

Choice of data structures	


 choose your data structures depending on the use"

 was discussed before and in the exercises:"
 if you need random access use an array"
 if you need to insert in the middle use a list"
 if you need both use a tree"

 use the standard C++ library containers wherever possible. They 
are (nearly) optimal."

  if you need a container not included:"
 design your own in the STL style"
 make it available to others"



Optimization	
 Week 10	


Programming techniques for scientific 
simulations	
 3	


Example: the best data structure for the Penna model	


 We picked a linked list because removal from the middle of a 
vector is slow"

 However a vector might be faster:"
 We do not care about the order of the animals"
 We can implement a special remove_if:"

 Replaces the removed animal with the last one"
 This makes removal fast"

 We can code a container derived from vector with a special 
remove_if"
 Will be faster than a std::list"
 Will require only a one-line change in the Penna code"

 Look at penna_vector.h"

Choice of algorithms	


 Look at the scaling of the algorithms with problem size:"
 Fourier transform"

 Simple: O(N2)"
 Fast Fourier Transform: O(N log N)"

 Matrix-Matrix multiplication"
 Simple: O(N3)"
 Strassen: O(N2.8)"
 Coppersmith and Winograd: O(N2.376)"

 Eigenvalues:"
 all eigenvalues, dense matrix: O(N3)"
 some eigenvalues, dense matrix: O(N2)"
 some eigenvalues, sparse matrix: O(N)"



Optimization	
 Week 10	


Programming techniques for scientific 
simulations	
 4	


The Strassen algorithm	


  is one example why you should use libraries even for trivial-looking 
operations"

 Normal matrix-matrix multiplication is order O(N3)"
 Strassen algorithm is O(Nlog7/log2)=O(N2.8)"

 write matrix as four submatrices"

 use a clever scheme"

C = AB
  

c11 c12

c21 c22

!

"
#

$

%
& =

a11 a12

a21 a22

!

"
#

$

%
&

b11 b12

b21 b22

!

"
#

$

%
&

c11 = Q1 +Q4 !Q5 +Q7
c21 =Q2 +Q4

c12 =Q3 +Q5
c22 = Q1 +Q3 !Q2 +Q6

Q1 = a11 + a22( ) b11 + b22( )
Q2 = a21 + a22( )b11
Q3 = a11(b12 ! b22)
Q4 = a22(!b11 + b21)
Q5 = a11 + a12( )b22
Q6 = !a11 + a12( ) b11 + b12( )
Q7 = a12 ! a22( ) b21 + b22( )

Comparing matrix multiplication algorithms	


  Standard algorithm is O(N3)"
 N3 multiplications"
 N2(N-1) additions"

  Strassen algorithm takes"
 7 multiplications of matrices of size N/

2	

 18 additions of matrices of size N/2	


 What is the complexity Tstrassen(N) ?	

 Tstrassen(N) = 7 Tstrassen(N/2) + 18/4 N2	


  Assuming Tstrassen(N) > O(N2)	

 O(Tstrassen(N)) = 7 O(Tstrassen(N/2))	

 O(Tstrassen(2N)) = 7 O(Tstrassen(N))	

 => Tstrassen(N) = O(Nlog7/log2)	




Optimization	
 Week 10	


Programming techniques for scientific 
simulations	
 5	


How do we find the best algorithm?	


 Look in books of Knuth"

 Search the SIAM journals"

 Do not trust the Numerical Recipes too much"

 But the easiest solution is: use a library"
 bug free (less buggy than your codes)"
 optimized (probably better than you can do)"
 well documented (do you ever document your codes?)"
 supported on most architectures "

 A huge collection is available on netlib at http://www.netlib.org/"
  In the next weeks we will introduce a variety of useful libraries"

How to optimize	


   Generally you should use a library instead of optimizing yourself. "

 But as computational scientists you will sometimes"
 have to write libraries"
 enter new research fields and algorithms where there is no library"

 We will learn how to optimize"
 Optimization using assembly language"
 Classical optimization techniques for any language"
 Optimization in C++"

 And look at libraries using these optimization techniques"



Optimization	
 Week 10	


Programming techniques for scientific 
simulations	
 6	


Optimization in assembly language	


 Sometimes the CPU possesses machine language instructions that 
cannot be used directly from a high level language"
 Bit counts"
 Vector instructions (discussed in “Numerisches Paralleles Rechnen”)"

 MMX and SSE on Pentium"
 Altivec on PowerPC"

 Assembly languages instructions can be mixed with C++"
 Advantage: can speed up code"
 Disadvantage: code becomes non-portable"
 useful only in very rare cases, but can potentially make a big difference"

 Best approach"
 Encapsulate assembly language call in a library"

Example: counting leading zeroes in an integer	


 Problem: count the number of leading zeroes in a 32-bit integer"
 Can be used to get the position of the highest bit set"
 Can be used to calculates the logarithm base 2 of an integer"

 Solution in C++: requires a loop"
 int count_leading_zeroes(int x) { 

  for (int i = 0 ; i<32 ;++i) 
    if (x&(1<<(31-i))) 
      return i; 
  return 32; 
} 

 Solution in PowerPC-assembler: (powerpc_asm.C)"
 inline int count_leading_zeros (int x) {   

  int c;   
  asm ("cntlzw %1,%0" : "=r" (c) : "r" (x) );   
  return c; 
} 



Optimization	
 Week 10	


Programming techniques for scientific 
simulations	
 7	


Inline assembly statements	


 We used an inline assembly statement, which mixes assembly language 
with C++:"
  asm ("cntlzw %1,%0" : "=r" (c) : "r" (x) );"

  Explaining the syntax:"
 asm(…): inserts an inline assembly language statement"
 cntlzw r9,r15 : puts the number of leading zeroes in register 9 into 

register 15 
 cntlzw %1, %0 : we do not know which register the compiler will use and 

thus use placeholders %0 and %1 (use %2 … if more registers  are needed) 
 : “=r” (c) : puts the variable c into the register marked by %0 (and after 

the execution assigns the value of the register %0 to c 
 : “r” (x): : The second : marks the input variables that will not be 

modified. This statement tells the compiler to load variable x into register %1 "

  To learn more, search the webs to find processor-specific instructions"
 But be warned that it is tricky "

Another example: long integers	


 How is 64-bit addition implemented on a 32-bit machine?"

 Just as you learned adding numbers in primary school:"
 Add the low words and remember the carry"
 Add the high words and the carry"

 Example: add64.C"
 g++ -c -save-temps -O add64.C 
 Look at add64.s"

 Compare to a 64-bit machine"
 Addition done in one step!"



Optimization	
 Week 10	


Programming techniques for scientific 
simulations	
 8	


128 bit integers in int128.C	


  If we need 128 bit integers we need to define a new class:"
 Build a 128 bit integer from two 64 bit ones: 

struct int128 { 
  unsigned long long low; 
  long long high; 
}; 

  How do we add them?"
 Adding low and high words separately will not be correct since the carry is not 

used  
int128 operator+(int128 x, int128 y) { 
  int128 result; 
  result.low=x.low+y.low; 
  result.high=x.high+y.high;  
  // wrong result: this does not use carry of previous addition 
  return result; 
} 

  Inline assembly language can be used to change “add without carry” to “add 
with carry”"

Helping the compiler optimize	


 Using an optimizing compiler is easier than writing fast code in 
assembly language"

 We will now discuss techniques to optimize code. "

 Some can be done by the compiler "
 You need to know about them to realize which optimizations you do 

not need to perform"
 Not optimizing manually what the compiler can do for you can help 

keep the code cleaner "

 Some have to be done by you"
 But only after you have determined by profiling that which function is 

the bottleneck "



Optimization	
 Week 10	


Programming techniques for scientific 
simulations	
 9	


Copy propagation (automatic)	


  is usually done by any modern compiler and need not be done by 
you."

  It changes 
 
x = y; 
z = 1 + x; 
"

  to"
 

x = y; 
z = 1 + y; 
"

 and allows pipelining of the two statements"

Constant folding (automatic)	


  Is also done by modern compilers and need not be done by you."

  It changes 
 
const int x = 100; 
int z = 2*x;  
"

  to"
 

const int x = 100; 
int z = 200;  
"

 And performs the multiplication at compile-time"



Optimization	
 Week 10	


Programming techniques for scientific 
simulations	
 10	


Dead code removal (automatic)	


  Is most useful in connection with template parameters. The 
compiler can detect if a statement is never executed"

  It changes 
 
int n = 100; 
if (n<1) 
  std::cerr << “n less than one”; 
…  
"

  to"

 int n = 100; 
… 

  thus removing the code that will never be executed"

Strength reduction (automatic)	


  The compiler often realizes how to simplify expressions, making them 
faster"

  It changes 
 
x = 2 * y; 
"

  to"
 

x = y + y;  
 

  or (for integer y) 
"

  x= ( y << 1 );  
"

  And performs the faster operation"



Optimization	
 Week 10	


Programming techniques for scientific 
simulations	
 11	


Variable renaming (automatic)	


  Is also often done by the compiler to expose potentials for 
pipelining"

  It changes 
 
int x = y * z; 
int q = r + x * x; 
    x = a + b;  
"

  to"
 

int x0 = y * z; 
int q = r + x0 * x0; 
int x = a + b;  
 

 And can now pipeline the last two statements 

Common subexpression elimination (automatic)	


 Can be done by the compiler in simple cases:"

  It changes 
 
d = c * (a + b); 
e = (a + b) / 2;  
"

  to"
 
  temp = (a + b); 

d = c * temp  
e = temp / 2;  
 

 And saves one addition 



Optimization	
 Week 10	


Programming techniques for scientific 
simulations	
 12	


Common subexpression elimination (manual)	


  If a function call is involved you have to perform common subexpression 
elimination manually!"

  You have to manually change  
 
d = c * f(x); 
e = f(x) / 2;  
"

  to"
 

  temp = f(x); 
d = c * temp  
e = temp / 2;  
 

  Since the compiler does not know whether f(x) is always the same 
number"
 maybe f is your name for a random number generator …."

Loop invariant code motion (automatic)	


  Scientific programs spend most of their time in loops. We have to 
minimize the work done in those loops. A compiler can help in simple 
loops:"

  It changes 
 
for (int i=0; i<n; ++i) { 
  a[i] = b[i] + c * d; 
  e = g[k]; 
} 
"

  to"
 

  temp = c * d; 
  for (int i=0; i<n; ++i) { 

  a[i] = b[i] + temp;  
}  
e = g[k]; 



Optimization	
 Week 10	


Programming techniques for scientific 
simulations	
 13	


Loop invariant code motion (manual)	


  In complex loops or I function calls are involved, we have to manually 
optimize"

 We have to manually change  
 
for (int i=0; i<n; ++i) { 
  a[i] = b[i] + f(x); 
  e = g(y); 
} 
"

  to"
 
  temp = f(x); 
  for (int i=0; i<n; ++i) { 

  a[i] = b[i] + temp;  
}  
e = g(y); 

Induction Variable Simplification (automatic / manual)	


  Induction variable simplification  is changing  
 
for (int i=0; i<n; ++i) { 
  k =  4*i + m; 
  … 
} 
"

  to"
 
  k = m; 

  for (int i=0; i<n; ++i) { 
  … 
  k += 4;  
}  
"



Optimization	
 Week 10	


Programming techniques for scientific 
simulations	
 14	


Importance of Induction Variable Simplification	


  Take care of hidden complexities in array subscripts: the code  
 
for (int i=0; i<n; ++i) { 
  x[4*i] = … 
 } 
"

  Is actually"
 
  for (int i=0; i<n; ++i) { 

  *(x+4*i) = … 
} 
 

  And is faster coded as"
   

  for (T* p=x; p<x+4*n; p+=4) { 
  *p = … 
} 
 
 

Loop unrolling (automatic / manual)	


 The loop for a scalar product"
 

  double s=0.; 
  for (int i=0; i<3; ++i) 

  s += x[i] * y[i]; 
"

  Is much faster when unrolled as"
 
  double s = x[0] * y[0] + x[1] * y[1] + x[2] * y[2]; 

 
  For two reasons:"

 No loop control statements"
 Easy pipelining"

  Simple loops can be unrolled by compilers with high enough optimization 
settings (-funroll-loops on gcc)"



Optimization	
 Week 10	


Programming techniques for scientific 
simulations	
 15	


Partial loop unrolling (automatic / manual)	


 The loop for an array product"
 

  for (int i=0; i<N; ++i) 
  a[i] = b[i] * c[i]; 
"

  Is much faster when partially unrolled as (for N a multiple of 4)"
 
 for (int i=0; i<N; i+=4) { 

 a[i]   = b[i]   * c[i];  
 a[i+1] = b[i+1] * c[i+1];  
 a[i+2] = b[i+2] * c[i+2];  
 a[i+3] = b[i+3] * c[i+3];  
} 

 
  Because pipelining can again be used"

Aiming for unit stride (manual)	


 The loop for a matrix sum"
 

  for (int i=0; i<N; ++i)   
  for (int j=0; j<N; ++j) 
    a[i][j] = b[i][j] + c[i][j]; 

 

  Is much faster than"
 

  for (int i=0; i<N; ++i)   
  for (int j=0; j<N; ++j) 
    a[j][i] = b[j][i] + c[j][i]; 

 

 Because the unit stride (sequential memory access) in the inner 
loop uses the cache much better"



Optimization	
 Week 10	


Programming techniques for scientific 
simulations	
 16	


In-cache matrix-matrix multiplications	


 The matrix multiplication"
 

for (int i=0; i<N; ++i)   
  for (int j=0; j<N; ++j) 
    for (int k=0; k<N; ++k) 
      a[i][j] += b[i][k] * c[k][j]; 
   

 

  Is better changed to get unit stride in the inner loop"
 

for (int i=0; i<N; ++i) 
  for (int k=0; k<N; ++k) { 
    temp = b[i][k]; 
    for (int j=0; j<N; ++j) 
      a[i][j] += temp * c[k][j]; 
  } 

Out-of-cache matrix multiplications: blocking	


 Performance degrades if the matrix does not fit into the cache"

 Split the matrix into smaller blocks and perform in-cache 
multiplications of the blocks:"

 The size of the blocks aij, bij and cij depends on the types and sizes 
of the caches. "

 This is tricky and we will learn about libraries doing it for you next 
week"

a11 a12 a13
a21 a22 a23
a31 a32 a33

!

"

#
#
#

$

%

&
&
&
=
b11 b12 b13
b21 b22 b23
b31 b32 b33

!

"

#
#
#

$

%

&
&
&

c11 c12 c13
c21 c22 c23
c31 c32 c33

!

"

#
#
#

$

%

&
&
&



Optimization	
 Week 10	


Programming techniques for scientific 
simulations	
 17	


Libraries for linear algebra	


 Fortran libraries"
 BLAS"
 LAPACK"

 C++ libraries"
 Blitz++"
 uBlas"
 ITL and IETL"
 POOMA"

 The Fortran libraries are well optimized but difficult to call"
 The C++ libraries are easier to use but not as complete yet"
 Fortran can also be called from C++, as we will do in one of the 

exercises"

Calling Fortran from C++	


 declare the function extern “C” 
 pass all parameters by pointers or reference"
 The naming depends on the machine"

 Fortran FUNC -> C func_ with GNU or Intel compilers"
 Fortran FUNC -> C func with IBM or Cray compilers"

 Program has to be linked with Fortran runtime libraries"

 Take care of:"
 Fortran real is float on most workstations but double on Cray"
 Fortran integer is usually an int"
 Array indices in Fortran usually start from 1"
 Storage order of matrices is reversed"
 Fortran a(i,j) is C a[j-1][i-1] 



Optimization	
 Week 10	


Programming techniques for scientific 
simulations	
 18	


A calling example: DDOT	


 The DDOT function in the BLAS library calculates the scalar (dot) 
product of two double precision vectors:"
 DOUBLE PRECISION FUNCTION DDOT(N,X,INCX,Y,INCY) 
DOUBLE PRECISION X(*),Y(*) 
INTEGER INCX,INCY,N 
 

 To call DDOT from C++ we need to declare it as:"
 extern “C” double ddot_(int& n, double *x, int& incx,  
                                double *y, int& incy); 

 To link we need to add the following options:"
 On the D-PHYS Linux machines: -lblas -lg2c -lm"
 On MacOS X: -framework vecLib"
 How to find options for other machines will be explained in the 

exercises"

BLAS	


  is short for Basic Linear Algebra Subroutines"
  is a Fortran library"
 BLAS level 1"

 vector operations: addition, dot product, …"
 BLAS level 2"

 matrix-vector operations"
 BLAS level 3"

 matrix-matrix operations"
 use the BLAS wherever possible"

 optimized assembler code versions available on most machines"
 generic Fortran version available on www.netlib.org"

 Homework: if you have a Unix or Linux  machine at home 
download and install BLAS and LAPACK"



Optimization	
 Week 10	


Programming techniques for scientific 
simulations	
 19	


ATLAS	


 We learned in the last weeks that optimizing matrix operations can be 
tricky:"
 For which sizes should we use Strassen’s algorithm?"
 How large should we choose sub-blocks to be get optimal cache effects by 

blocking?"

  The Fortran BLAS on netlib works on all machines and thus cannot be 
optimized to the CPU, cache size and cache type of your machine"

 On supercomputers the vendors provide a hand-optimized BLAS"

  ATLAS is the solution for the rest of us:"
 A self-tuning library"
 When being installed it benchmarks hundreds of blocking strategies until it 

finds the optimal one for your machine"
  It then compiles a BLAS with these optimal settings"

ATLAS benchmark example 1	




Optimization	
 Week 10	


Programming techniques for scientific 
simulations	
 20	


ATLAS benchmark example 2	


LAPACK Overview	


  is a Linear Algebra PACKage"
 ScaLAPACK is the parallel version"
 has functions for"

 eigenvalues and -vectors"
 linear equation solvers"
 matrix inversions"
 determinants"
 ..."

 special functions for"
 symmetric or Hermitian matrices"
 tridiagonal matrices"
 banded matrices"



Optimization	
 Week 10	


Programming techniques for scientific 
simulations	
 21	


LAPACK & BLAS naming conventions	


  functions are of the form"
 PTTXXX"

 where P is the precision"
 S single precision real"
 D double precision real"
 C single precision complex"
 Z double precision complex"

 TT is the matrix type:"
 GE general,"
 SY symmetric"
 HE Hermitian"
 ..."

 Example: DGEEV is the double precision general eigensolver"

Important LAPACK functions	


 Eigensolvers: ***EV  for"
 we will use DSYEV or SSYEV for the exercises"

 Linear equation solvers: ***SV"

 Linear least squares: ***LS"

 Factorizations:"
 LQ: ***LQF"
 QL: ***QLF"

 Matrix inverse: ***TRI"



Optimization	
 Week 10	


Programming techniques for scientific 
simulations	
 22	


 The fastest open source Fourier transfrom library is the self-tuning 
FFTW (“Fastest Fourier Transform in the West”) "

 Available from http://www.fftw.org/ "

Commercial libraries: NAG, IMSL, …	


 add many more functions, like:"
 optimizations"
 non-linear root solvers"
 interpolation"
 statistical functions"
 …"

 They are however not free but commercial libraries"
 cost a lot of money"
 not suitable for private use"
 ETH has a site license: you can us them in your research"


