
Parallel programming	

 Week 14	

Programming techniques	

 1	

An Introduction to Parallel Computing 	

Shared memory architectures	

 share a common main memory"
 are easy to program since  

all CPUs access the same data  
"

 Disadvantages"
 scales well only to about 32 CPUs"
 concurrent access to memory is a problem"
 all CPUs share a path to the memory"
 one CPU that accesses the memory blocks all others but each has its

own cache"

CPU 1

CPU 2 CPU 4

CPU 3
S
H
A
R
E
D

M
E
M
O
R
Y

Parallel programming	

 Week 14	

Programming techniques	

 2	

Distributed memory architectures	

 each CPU has access 
only to its local memory 
"

 access to data of other 
CPUs only by  
communicating with these CPUs 
"

 Disadvantages"
 access to remote memory is slow"
 harder to program efficiently 
"

 Advantage"
 much much cheaper"

CPU 1 CPU 2 CPU 4CPU 3

local
memory

local
memory

local
memory

local
memory

Types of architectures	

 SISD"
 single instruction - single data: an ordinary serial CPU"

 SIMD"
 single instruction - multiple data"
 all CPUs perform exactly the same operation on different data"
 was often used in the first parallel machines, now uncommon"
 But coming back in SSE units, graphics cards, …"

 SPMD"
 single procedure (program) - multiple data"
 all CPUs run the same program"

 MIMD"
 multiple instruction - multiple data"
 nowadays the most common type - all CPUs can run independently,

doing different tasks"

Parallel programming	

 Week 14	

Programming techniques	

 3	

Parallel machines	

  SIMD style"
 Old machines: MasPar, Thinking Machines 1 and 2"
"
"

 Massively parallel machines"
  IBM BlueGene, Cray XT5, SGI Altix"
 achieve more than 1 petaflop performance!"
  fastest machines on the world"

  Clusters"
 clusters of PCs running Linux, best price-performance ratio"
 pioneered by physicists at NASA, Los Alamos, Sandia, …"
 7000-CPU Brutus cluster is available at ETH"

Network topologies	

  all-to-all: "
 needs N(N-1)/2 connections, but fastest communication"

  Hypercube"
 nodes on edges of hypercube, N log2N connections"

  3D crossbar"
 nodes on cube, 6N connections, used in Cray XT3, IBM BlueGene"

  2D crossbar"
 nodes on square, 4N connections, used in Hitachi supercomputers"

  Ring"
 2N connections, slow connection but appropriate for some problems"

  Star"
 used often in clusters, nodes connected to Ethernet hub"

Parallel programming	

 Week 14	

Programming techniques	

 4	

Coarse Grain Parallelism	

 Parallelization can occur at many levels 
"

 Coarse grain parallelization is simply running several independent
programs on different CPUs 
"

 Can be used to simulate many different parameter sets like"
 temperatures"
 system sizes"
 mutation rates 
"

 This is very common in physics"

 We just need an efficient queuing system"

Medium Grain Parallelism	

 For big problems we want to parallelize one program"

 Medium grain parallelism makes use of the fact that some routines
can be performed independently 
"

 This needs some extra programming work"

Parallel programming	

 Week 14	

Programming techniques	

 5	

Fine Grain Parallelism	

  In order to scale to many hundreds of CPUs often fine grain
parallelism, within one function, is needed"
 Example: 
 
for (int j=0;j<N;+j)  
 a[j]=b[j]+c[j];  
could be split over M CPUs, each performing the summation on 1/M-
th of the vectors"

 This can sometimes be done automatically by smart compilers"
 in simple for loops"
 on shared memory machines"

  In C++ libraries that can do this can be developed"

Message Passing on distributed memory architectures	

 Without automatic parallelization we need to program the
communication between CPUs (also called nodes)"

 This is called message passing!

 Vendor specific libraries have been replaced by the MPI standard"

  If you know how to send Christmas greetings by postal mail you
know all you need to know"

Parallel programming	

 Week 14	

Programming techniques	

 6	

What is a message?	

 A message is a block of data sent by one node to another 
"

  It usually consists of"
 pointer to buffer containing data"
 length of data in the buffer"
 a message tag, usually an integer identifying the type of message"
 number of the destination node(s)"
 number of the sender node"
 optionally a data type  
"

 The message is passed through the network from the sender to the
receiving node"

Sending and receiving a message	

  An SPMD “Hello World” program"
 node 1 sends a string  

with tag 99 to node 0"
 node 0 receives a string  

with tag 99 from node 1  
 and prints it"

  The program:"

#include <iostream>"
#include <string>"
#include <mpi.h>"
int main(int argc, char**

argv) {"
 MPI_Init(&argc, &argv);"
 int num;"
 MPI_Comm_rank("
 MPI_COMM_WORLD,&num);"

if(num==0) {"
 // master  

MPI_Status status;  
char txt[100];  
MPI_Recv(txt,100,MPI_CHAR,  
 1,99,MPI_COMM_WORLD, &status);  
std::cout << txt << “\n”;"

 }"
else {"
 // slave  

std::string text=“Hello world!”;  
MPI_Send( 
const_cast<char*>(text.c_str()),  
 text.size()+1, MPI_CHAR,  
 0,99, MPI_COMM_WORLD);"

 }"
 MPI_Finalize();"
 return 0;"
}"

Parallel programming	

 Week 14	

Programming techniques	

 7	

Running the example using OpenMPI	

 Get the sources from the web page"

  Use your machine’s MPI installation or get the OpenMPI libraries from
http://www.open-mpi.org "

  Compile the program:"
 mpiCC -o example1 example1.C"

  Run the program in parallel using 2 processes:"
 mpirun -np 2 ./example1"

The MPI standard	

 We have seen several functions"
 MPI_Init"
 MPI_Finalize"
 MPI_Comm_rank"
 MPI_Send"
 MPI_Recv 
"

 detailed explanations are available in the MPI manuals on
www.mpi-forum.org  
"

 other message passing libraries have similar functions"

Parallel programming	

 Week 14	

Programming techniques	

 8	

MPI_Send and MPI_Recv	

  int MPI_Send(void* buf, int count, MPI_Datatype type, int
dest, int tag, MPI_Comm comm);"
 buf … buffer containing data"
 count … number of elements"
 type … datatype (MPI_BYTE is raw data)"
 dest … destination number"
 tag … message tag"
 comm … communicator, MPI_COMM_WORLD is default"

  int MPI_Recv(void* buf, int count, MPI_Datatype type, int
source, int tag, MPI_Comm comm, MPI_Status* status)"
 MPI_ANY_SOURCE and MPI_ANY_TAG are wildcards"
 count … size of buffer available for message"
 status … returns information on the message"

MPI_Probe and MPI_Iprobe	

  can be used to wait or check for a message"
 int MPI_Probe(int source, int tag, MPI_Comm comm,

MPI_Status *status_ptr)"
 int MPI_Iprobe(int source, int tag, MPI_Comm comm,  

int* flag, MPI_Status *status_pts)"

  MPI_Probe waits for a message, MPI_Iprobe checks for one"

  flag indicates if a message is there"
 status can be queried about the message"

 status.MPI_SOURCE … gets the source process"
 status.MPI_TAG … gets the message tag"
 status.MPI_ERROR "
 int MPI_Get_count(MPI_Status *status_ptr, MPI_Datatype

datatype, int* count) … gets the number of elements"

  can be used to get size of unknown message before receiving it"

Parallel programming	

 Week 14	

Programming techniques	

 9	

Deadlocks: deadlock1.C, deadlock2.C	

 Consider synchronous communication:"
 node 0:"

MPI_Ssend(&d,1,MPI_DOUBLE,1,tag,MPI_COMM_WORLD);"
MPI_Recv(&d,1,MPI_DOUBLE,1,tag,MPI_COMM_WORLD,&status);"

 node 1:"
MPI_Ssend(&d,1,MPI_DOUBLE,0,tag,MPI_COMM_WORLD);"
MPI_Recv(&d,1,MPI_DOUBLE,0,tag,MPI_COMM_WORLD,&status);"

 will deadlock as both wait for reception of message"
 Solution:"

 node 0:"
MPI_Recv(&d,count,MPI_DOUBLE,1,tag,MPI_COMM_WORLD,&status);"
MPI_Ssend(&d,count,MPI_DOUBLE,1,tag,MPI_COMM_WORLD);"

 node 1:"
MPI_Ssend(&d,count,MPI_DOUBLE,0,tag,MPI_COMM_WORLD);"
MPI_Recv(buf2,count,MPI_DOUBLE,0,tag,MPI_COMM_WORLD,&status);"

 Check for this in your code!"

Blocking communication types	

 Synchronous send MPI_Ssend"
 returns only after recipient has started to receive"

 Buffered send MPI_Bsend"
 makes a copy of buffer and returns once delivery is possible, can be

before actual receipt, can be asynchronous"

 Standard blocking send MPI_Send"
 either buffered (small messages) or synchronous,"

 All these return only once the data can be reused"

 Blocking receive MPI_Recv"
 returns only after message has been received"

Parallel programming	

 Week 14	

Programming techniques	

 10	

Nonblocking communication types	

 are nonblocking, I.e. return before buffer can be reused  
can be used to overlay communication and computation"
 MPI_Issend!
 MPI_Ibsend!
 MPI_Isend!
 MPI_Irsend"

 must be called only after other node has posted receive"
 optimized version!"

 MPI_Irecv also does not wait for completion"
 MPI_Test checks for completion"
 MPI_Wait waits for completion"
 MPI_Cancel cancels request"
 Compare "

 Blocking vs. nonblocking"
 Synchronous vs. asynchronous"

Collective Communication	

 Communication between many processes can be optimized"
 simple form of broadcast"

 step 1: 0 -> 1"
 step 2: 0 -> 2"
 …"
 step N-1: 0 -> N"

 optimized broadcast"
 step 1: 0 -> 1"
 step 2: 0 -> 2, 1 -> 3"
 step 3: 0 -> 4, 1 -> 5, 2 -> 6, 3 -> 7"
 step 4: 0 -> 8, 1 -> 9, 2 -> 10, 3 -> 11, 4 -> 12, 5 -> 13, 6 -> 14, …"

 Optimized version in log2(N) instead of N steps!"

Parallel programming	

 Week 14	

Programming techniques	

 11	

Types of collective communication	

 Broadcast sends same data to all nodes "
 Scatter / Gather"

 scatter: caller sends n-th portion of data to n-th node"
 gather: caller receives n-th portion of data from n-th node"

 All-gather"
 everyone receives n-th portion of data from n-th node"

 All-to-all"
 n-th node sends k-th portion to node k and receives n-th portion from

node k; like a matrix transpose"
 Reduce"

 combines gather with operation (e.g. sum all portions)"
 All-reduce, Reduce-scatter, …"
 Barrier: waits for all nodes to call it; for synchronization"

One-way communication	

 a normal communication needs handshake"
 sender requests to send"
 recipient agrees to accept"
 sender sends data"

 This needs three one-way messages! 
"

 Remote Memory Access (RMA) allows one processor to directly
write/read another’s memory through messages"
 implemented on most massively parallel machines"
 included in the MPI-2 standard  
"

 only useful on special hardware"

Parallel programming	

 Week 14	

Programming techniques	

 12	

SPMD style	

 All nodes execute the same program: example2.C"

 Example: Integration of a function f over [a,b[on N nodes"
int main(int argc, char** argv) {"
// do some initialization "
..."
// find interval for this node"
int num, total;"
MPI_Comm_size(MPI_COMM_WORLD,&total);"
MPI_Comm_rank(MPI_COMM_WORLD,&num)"
double interval=(b-a)/total;"
double start=a+interval*num;"
double end=start+interval;"
integrate(start,end,steps/total);"
… // collect results, print them and quit"
}"

Master - Slave style	

 One node, the Master distributes
tasks: example3.C"

 Other nodes (slaves) ask for
tasks and perform them 
"
int main(int argc, char**

argv) {"
 … // initialize"
int num;"
MPI_Rank(MPI_COMM_WORLD,"
 &num);"
if(num==0) master();"
else slave();"

void master() {"
… // find tasks and"
 // distribute them "
}"
"
void slave() {"
… // ask master for tasks"
 // and perform them"
}"

 Master and slave can run
different programs!"

Parallel programming	

 Week 14	

Programming techniques	

 13	

Scaling with node number: Amdahl’s law	

 The sequential, non-parallel part will dominate the CPU time!"
 Assume N nodes"
 on one node: T1 = Tserial+Tparallel"
 on N nodes: TN = Tserial+Tparallel/N+Tcommunication(N)"
 define serial ratio s= Tserial/T1"

 Reduce serial parts"
 The optimum speedup would be  

T1/TN< N / (1+s(N-1)) < 1/s"
 even if 1% is serial it does not scale well beyond 100 nodes! 

ASCI machines have >10000 nodes!"
 Reduce communication time"

 Try to keep Tcommunication as small as possible"
 Overlay communication with computation"

 Make a plot of the speedup vs. N for your program!"

Debugging a parallel program	

  is very hard"
 main problem are deadlocks"
 some graphical tools exist:"

 xpvm"
 xmpi"

 can help to understand what is going on  
"

 Hints"
 first write a working serial program"
 Parallelize it and run it one one node first"
 two nodes next"
 …"

 Good luck!!!"

Parallel programming	

 Week 14	

Programming techniques	

 14	

OpenMP standard for shared memory architectures	

 Home page: http://www.openmp.org"
 Contains the specification of the standard including many examples"

 We will look at the C/C++ standard"

 Semi-automatic parallelization using directives"
 A directive is written as a line before the statement or block of

statements: 
 
#pragma omp directive!

 Some auxilliary function calls"

A first parallel example	

 A simple loop is parallelized"
 Possible only if there are no dependencies 
 
"

  #pragma omp parallel  
{ // each parallel region starts with this directive 
#pragma omp for  
 for (i=1; i<n; i++)  
 b[i] = (a[i] + a[i-1]) / 2.0;  
}"

 Or the shortcut version for a single loop  
 
#pragma omp parallel for  
for (i=1; i<n; i++)  
 b[i] = (a[i] + a[i-1]) / 2.0;  
"

Parallel programming	

 Week 14	

Programming techniques	

 15	

Two loops	

 Two loops are parallelized  
 
#pragma omp parallel  
{  
#pragma omp for nowait  
 for (i=1; i<n; i++)  
 b[i] = (a[i] + a[i-1]) / 2.0;  
#pragma omp for nowait  
 for (i=0; i<m; i++)  
 y[i] = sqrt(z[i]);  
}"

 The nowait directive avoids the implied barrier at the end of the
first loop. A thread may start on the second loop before the first is
finished. 
"

Loop parallelization schedules	

  Several scheduling strategies can be specified  
 
#pragma omp parallel for schedule(schedule)  
for (i=1; i<n; i++)  
 b[i] = (a[i] + a[i-1]) / 2.0;  
 "

  Static scheduling: schedule(static,chunksize)"
  Assigns each thread blocks of size chunksize at compile time"
  Useful if all iterations take the same amount of work and all threads are equally fast"

  Static scheduling: schedule(dynamic,chunksize)"
  Assigns each thread blocks of size chunksize"
  Once a thread finishes a block it gets the next block to be done"
  Useful if all iterations take the same amount of work but not all threads are equally fast"

  Static scheduling: schedule(guided,chunksize)"
  Assigns blocks of size at least chunksize"
  At first bigger blocks are used, later smaller ones to give optimal performance"
  Useful if neither thread speed nor work load are equal"

Parallel programming	

 Week 14	

Programming techniques	

 16	

Simple parallel regions	

 Split the work 
#pragma omp parallel shared(x, npoints) private(iam, np, ipoints)  
{  
 iam = omp_get_thread_num();  
 np = omp_get_num_threads();  
 ipoints = npoints / np;  
 subdomain(x, iam, ipoints);  
}"

 shared specifies which variables are shared between the threads"
 private specifies variables of which each thread has its own"
 By default all variables except for loop counters in for loop are

shared"

 For more information, and firstprivate, lastprivate,
copyin see the OpenMP specification"

Auxilliary functions	

  omp_get_thread_num() … returns the number of the current thread"
  omp_set_num_threads(int) … sets the number of threads"
  omp_get_num_threads() … returns the number of threads"
  omp_get_max_threads() … returns the maximum number of threads"
  omp_get_num_procs() … returns the number of processors used"
  omp_set_dynamic(bool) … enables/disables automic adjustment 

" " " "of the number of threads"
  omp_get_dynamic() … returns if automatic adjustment is allowed"

  All these functions work only with OpenMP. To make the code portable
use the following trick to e.g. enforce four threads if OpenMP is used: 
 
#ifdef _OPENMP  
omp_set_dynamic(false);  
omp_set_num_threads(4);  
#endif "

Parallel programming	

 Week 14	

Programming techniques	

 17	

Critical sections	

  Some parts of code may be critical"
 Only one thread may enter it at any time"
 Example: assigning a new task"

  #pragma omp parallel shared(x, y) private(x_next, y_next)  
{  
 #pragma omp critical (xaxis)  
 x_next = dequeue(x);  
 work(x_next);  
 #pragma omp critical (yaxis)  
 y_next = dequeue(y);  
 work(y_next);  
}"

  Different critical sections may be distinguished by names"
 Each section with a certain name may be entered only by one thread at a

time."
 More than one section may have the same name: only one thread at a time

may be in any section with the given name "

Performing atomic updates	

  We need to store results of calculations"
  No two threads should try to update the same location simultaneously 

"

  Solution 1: make the writing critical: only one thread will ever write  
terribly slow, no speedup!  
 
#pragma omp parallel for shared(sum)  
for (i=0; i<n; i++) {  
 #pragma omp critical  
 sum+= f(i);  
 
}"

  Solution 2: make the writing atomic: no two threads will ever have the same value
of index[i] simultaneously, much faster 
 
 #pragma omp parallel for shared(x, y, index, n)  
for (i=0; i<n; i++) {  
 #pragma omp atomic  
 x[index[i]] += work1(i);  
 y[i] += work2(i);  
}"

Parallel programming	

 Week 14	

Programming techniques	

 18	

Reductions 	

  Loops like the following may appear in an integration code 
 
for (i=0; i<n; i++)  
 sum += f(a+i*delta);"

  This is one way to parallelize, using features we know  
 
#pragma omp parallel shared (sum) private(partial)  
{  
 partial = 0.;  
 #pragma omp for  
 for (i=0; i<n; i++)  
 partial += f(a+i*delta);  
 
 #pragma omp atomic  
 sum += partial;  
}"

  Or better, automatically using the reduction clause 
 
#pragma omp parallel for reduction(+: sum)  
for (i=0; i<n; i++)  
 sum += f(a+i*delta);"

Parallelizing macro tasks	

 Consider three functions that can be executed simultaneously: 
  
#pragma omp parallel sections  
{  
 #pragma omp section  
 xaxis();  
 #pragma omp section  
 yaxis();  
 #pragma omp section  
 zaxis();  
}"

Parallel programming	

 Week 14	

Programming techniques	

 19	

Statements executed only by a single thread	

 Only a single thread should ever print 
 #pragma omp parallel  
{  
 #pragma omp single  
 std::cout << “Beginning work1.\n”;  
 work1();  
 #pragma omp single  
 std::cout << Finishing work1.\n";  
 #pragma omp single nowait  
 std::cout << "Finished work1 and beginning work2.\n";  
 work2();  
}"

Keeping the same order	

 Consider a loop  
for (i=lb; i<ub; i+=st)  
 work(i);  
"

 This function works but prints the number in arbitrary order  
void work(int k)  
{  
 #pragma omp critical  
 std::cout << k;  
}"

 The ordered pragma ensures to get the same order as in
sequential execution  
void work(int k)  
{  
 #pragma omp ordered  
 std::cout << k;  
}"

