
Week 2 - C++ part 2	

 9/26/10	

Programming techniques	

 1	

An Introduction to C++ 	

Part 2

More basic C and C++:

Getting the new (updated) sources by CVS	

 If you are on your own machine, set CVS access by ssh using
either (better add them to your .tcshrc or .bashrc files):
 bash: export CVS_RSH=ssh
 tcsh: setenv CVS_RSH ssh

 Go to your source directory, e.g.
 cd Vorlesung/PT

 Update your sources
 cvs update -d

 The -d option told CVS to look for new directories (here week2).
Now go there:
 cd week2

Week 2 - C++ part 2	

 9/26/10	

Programming techniques	

 2	

Static memory allocation	

 Declared variables are assigned
to memory locations"

int x=3;

int y=0;"

 The variable name is a symbolic
reference to the contents of some
real memory location"
 It only exists for the compiler"
 No real existence in the computer"

0

4

8

12

16

20

24

28

3

0

x

y

address contents name

Pointers	

 Pointers store the address of a memory location"
 are denoted by a * in front of the name"
int *p; // pointer to an integer"

 Are initialized using the & operator"
int i=3;

p =&i; // & takes the address of a variable"

 Are dereferenced with the * operator"
*p = 1; // sets i=1  

 Can be dangerous to use"
" p = 1; // sets p=1: danger! 

*p = 258; // now messes up everything, can crash"

 Take care: int *p; does not allocate memory!"

0

4

8

12

16

20

24

28

address contents name

28913	

 p	

3	

 i	

4	

1	

1	

16777216	

2	

Week 2 - C++ part 2	

 9/26/10	

Programming techniques	

 3	

Dynamic allocation	

 Automatic allocation"
 float x[10]; // allocates memory for 10 numbers"

 Allocation of flexible size"
 unsigned int n; cin >> n; float x[n]; // will not work"
 The compiler has to know the number!"

 Solution: dynamic allocation"
 float *x=new float[n]; // allocate some memory for an array"
 x[0]=…;… // do some work with the array x"
 delete[] x; // delete the memory for the array. x[i], *x now undefined!"

 Donʼt confuse "
 delete, used for simple variables "
 delete[], used for arrays"

Pointer arithmetic	

 for any pointer T *p; the following holds:"
 p[n] is the same as *(p+n);

 Adding and integer n to a pointer increments it by the n times the
size of the type – and not by n bytes"

 Increment ++ and decrement -- increase/decrease by one element"

 Be sure to only use valid pointers"
 initialize them"
 do not use them after the object has been deleted!"
 catastrophic errors otherwise"

Week 2 - C++ part 2	

 9/26/10	

Programming techniques	

 4	

Arrays and pointers	

 are very similar, but subtly different! 

int array[5];

for (int i=0;i < 5; ++i)
 array[i]=i;

int* p = array; // same as &array[0] 
for (int i=0;i < 5; ++i)
 cout << *p++;

delete[] p; // will crash  
array=0; // will not compile
p=0; // is OK

 see these examples! 

int* pointer=new int[5];

for (int i=0;i < 5; ++i)
 pointer[i]=i;

int* p = pointer;
for (int i=0;i < 5; ++i)
 cout << *p++;

 p=pointer;
delete[] p; // is OK
delete[] pointer; // crash
delete[] p; // will crash
p=0; // is OK
pointer=0; // is OK"

A look at memory: array example	

 Array example  

int array[5];

for (int i=0;i < 5; ++i)
 array[i]=i;

int* p = array; // same as &array[0] 
for (int i=0;i < 5; ++i)
 cout << *p++;

delete[] p; // will crash  
array=0; // will not compile
p=0; // is OK

0

4

8

12

16

20

24

28

address contents name

a[0]

a[1]

a[2]

a[3]

a[4]

p0

0

1

2

3

4

Week 2 - C++ part 2	

 9/26/10	

Programming techniques	

 5	

A look at memory: pointer example	

 Array example  

int* pointer=new int[5];

for (int i=0;i < 5; ++i)
 pointer[i]=i;

int* p = pointer;
for (int i=0;i < 5; ++i)
 cout << *p++;

delete[] pointer; // is OK
delete[] pointer; // crash
delete[] p; // will crash
p=0; // is OK
pointer=0; // is OK"

0

4

8

12

16

20

24

28

address contents name

pointer

p

12

12

0

1

2

3

4

References	

 are aliases for other variables: 

float very_long_variabe_name_for_number=0;

float &x=very_long_variabe_name_for_number;
// x refers to the same memory location  

x=5; // sets very_long_variabe_name_for_number to 5; 

float y=2;

x=y; // sets very_long_variabe_name_for_number to 2;"
 // does not set x to refer to y!"

Week 2 - C++ part 2	

 9/26/10	

Programming techniques	

 6	

A more flexible program: function calls	

#include <iostream>

using namespace std;

float square(float x) {

 return x*x;

}

int main() {

 cout << “Enter a number:\n”;
 float x;

 cin >> x;

 cout << x << “ “ <<
square(x) << “\n”;

 return 0;

}

 a function “square” is defined"
 return value is float"
 parameter x is float  

 and used in the program"

Function call syntax	

 syntax:"
returntype functionname
(parameters)!

{ !
 functionbody!
}"
 returntype is “void” if there is no

return value:"
void error(char[] msg) {

 cerr << msg << “\n”;

} "

 There are several kinds of
parameters:"
 pass by value"
 pass by reference"
 pass by const reference"
 pass by pointer 

 Advanced topics to be discussed
later:"
 inline functions"
 default arguments"
 function overloading"
 template functions"

Week 2 - C++ part 2	

 9/26/10	

Programming techniques	

 7	

Pass by value	

 The variable in the function is a copy of the variable in the calling
program:"
void f(int x) {

 x++; // increments x but not the variable of the calling program"
 cout << x;

}

int main() {

 int a=1;

 f(a);

 cout << a; // is still 1
}

 Copying of variables time consuming for large objects like matrices"

Pass by reference	

 The function parameter is an alias for the original variable:"
void increment(int& n) {

 n++;

}

int main() {

 int x=1; increment(x); // x now 2
 increment(5); // will not compile since 5 is literal constant!
}"

 avoids copying of large objects:"
 vector eigenvalues(Matrix &A);"

 but allows unwanted modifications!"
 the matrix A might be changed by the call to eigenvalues!"

Week 2 - C++ part 2	

 9/26/10	

Programming techniques	

 8	

Pass by const reference	

 Problem: "
 vector eigenvalues(Matrix& A); // allows modification of A"
 vector eigenvalues(Matrix A); // involves copying of A 

 how do we avoid copying and prohibit modification?"
 vector eigenvalues (Matrix const &A);"
 now a reference is passed -> no copying"
 the parameter is const -> cannot be modified"

Pass by pointer	

 Another method to pass an object without copying is to pass its
address"

 Used mostly in C  

 vector eigenvalues(Matrix *m);

 disadvantages:"
 The parameter must always be dereferenced: *m;"
 In the function call the address has to be taken: 

Matrix A;
cout << eigenvalues(&A);

 rarely needed in C++"

Week 2 - C++ part 2	

 9/26/10	

Programming techniques	

 9	

A swap example	

 Five examples for swapping number"
 void swap1 (int a, int b) { int t=a; a=b; b=t; }
 void swap2 (int& a, int& b) { int t=a; a=b; b=t;}
 void swap3 (int const & a, int const & b)

{ int t=a; a=b; b=t;}

 void swap4 (int *a, int *b) { int *t=a; a=b; b=t;}
 void swap5 (int* a, int* b) {int t=*a; *a=*b; *b=t;}

 Which will compile?"
 What is the effect of:"

 int a=1; int b=2; swap1(a,b); cout << a << " " << b << "\n";
 int a=1; int b=2; swap2(a,b); cout << a << " " << b << "\n";
 int a=1; int b=2; swap3(a,b); cout << a << " " << b << "\n";
 int a=1; int b=2; swap4(&a,&b); cout << a << " " << b << "\n";
 int a=1; int b=2; swap5(&a,&b); cout << a << " " << b << "\n";

Contract programming	

 For each function define the set of"
 Preconditions"

 Conditions that the caller has to satisfy to get legal and correct behavior."
 The callee can assert on the conditions, to test the precondition and abort if hey are

not satsified. This helps debugging."
 Postconditions"

 Conditions that the callee guarantees if the caller satisfies the preconditions. Again
the callee can assert on the postconditions to help debugging if it is not obvious
that the postcondition is satisfied."

 Invariants"
 Are expressions that stay unchanged when a mutating function is called, if the

preconditions are satisfied."

 Document the preconditions, postconditions and invariants and
include tests"

Week 2 - C++ part 2	

 9/26/10	

Programming techniques	

 10	

Type casts	

 Variables can be converted (cast) from one type to another"

 static_cast converts one type to another, using the best defined
conversion, e.g."
 float y=3.f;
 int x = static_cast<int>(y);"
 replaces the C construct int x= (int) y;

 reinterpret_cast does not care about the meaning of the variable
(e.g. a pointer) but just interprets the bit pattern as the new type"
 int x = *reinterpret_cast<int*>(&y);
 Converts a pointer to a float to a pointer to an int"
 x will contain the bit pattern representing 3.f;"
 Compile and run the file cast.C

Type casts (continued)	

 const_cast can be used to remove const-ness from a variable"
 Example: need to pass a double* to a C-style function which does not

change the value, but I only have a const double*  

void legacy_c_function (double* d);

void foo(const double* d) {
 // remove the const
 double* nonconst_d = const_cast<double*>(d);
 // now call the function
 legacy_c_function(nonconst_d);
 }

 Use it very sparingly. Usually the need for const_cast is a sign of bad
software design "

 Other casts to be discussed later:"
 dynamic_cast
 boost::lexical_cast
 boost::numeric_cast"

Week 2 - C++ part 2	

 9/26/10	

Programming techniques	

 11	

Namespaces	

 What if a square function is
already defined elsewhere?"

 C-style solution: give it a unique
name; ugly and hard to type"
float ETH_square(float);"

 Elegant C++ solution:
namespaces"
 Encapsulates all declarations in a

modul, called “namespace”,
identified by a prefix"

 Example: 
namespace ETH
{
 float square(float);
}"

 Namespaces can be nested"

 Can be accessed from outside
as:"
 ETH::square(5);
 using ETH::square;

square(5);

 using namespace ETH;
square(5);

 Standard namespace is std

 For backward compatibility the
standard headers ending in .h
import std into the global
namespace. E.g. the file
“iostream.h” is:"
#include <iostream>

using namespace std;"

Steps when compiling a program	

 What happens when we type the following?  
g++ hello.C

 Observe the steps by adding some extra flags: 
g++ --verbose -save-temps hello.C

hello.C hello.ii hello.s hello.o
preprocessor	

 compiler	

 assembler	

a.out

libgcc.a libm.a

linker	

Week 2 - C++ part 2	

 9/26/10	

Programming techniques	

 12	

The C++ preprocessor	

 Is a text processor, manipulating the source code"
 Commands start with #"

 #define XXX
 #define YYY 1
 #define ADD(A,B) A+B
 #undef ADD
 #ifdef XXX
#else
#endif

 #if defined(XXX) && (YYY==1)
#elif defined (ZZZ)
#endif

 #include <iostream>
 #include “square.h”

#define	

 Defines a preprocessor macro"
 #define XXX “Hello”

cout << XXX;

 Gets converted to  
cout << “Hello”

 Macro arguments are possible"
 #define SUM(A,B) A+B

cout << SUM(3,4);"
 Gets converted to  

cout << 3+4;

 Definitions on the command line possible"
 g++ -DXXX=3 -DYYY
 Is the same as writing in the first line: 

#define XXX 3
#define YYY

Week 2 - C++ part 2	

 9/26/10	

Programming techniques	

 13	

#undef	

 Undefines a macro"
 #define XXX “Hello”
cout << XXX;
#undef XXX
cout << “XXX”;

 Gets converted to  
cout << “Hello”
cout << “XXX”

 Definitions on the command line are also possible"
 g++ -UXXX
 Is the same as writing in the first line: 
#undef XXX

Looking at preprocessor output	

 Running only the preprocessor:"
 g++ -E

 Running the full compile process but storing the preprocessed files"
 g++ -save-temps

 Look at the files pre1.C and pre2.C, then at the output of"

 g++ -E pre1.C
 g++ -E pre2.C
 g++ -E -DSCALE=10 pre2.C

Week 2 - C++ part 2	

 9/26/10	

Programming techniques	

 14	

#ifdef … #endif	

 Conditional compilation can be done using #ifdef"
 #ifdef SYMBOL
 something
#else
 somethingelse
#endif

 Becomes, if SYMBOL is defined: 
something"

 Otherwise it becomes 
 somethingelse"

 Look at the output of"
 g++ -E pre3.C
 g++ -DDEBUG -E pre3.C

#if … #elif … #endif	

 Allows more complex instructions, e.g."
 #if !defined (__GNUC__)
 std::cout << “ A non-GNU compiler”;
#elif __GNUC__<=2 && _GNUC_MINOR < 95
 std::cout << “gcc before 2.95”;
#elif __GNUC__==2
 std::cout << “gcc after 2.95”;
#elif __GNUC__>=3
 std::cout << “gcc version 3 or higher”;
#endif

Week 2 - C++ part 2	

 9/26/10	

Programming techniques	

 15	

#error	

 Allows to issue error messages 

#if !defined(__GNUC__)
#error This program requires the GNU compilers
#else
…
#endif

 Try the following"
 g++ -c pre4.C

#include “file.h” #include <iostream>	

 Includes another source file at the point of invocation"

 Try the following"
 g++ -E pre5.C

 < > brackets refer to system files, e.g. #include <iostream>
 g++ -E pre6.C

 With -I you tell the compiler where to look for include files. Try:"
 g++ -E pre7.C
 g++ -E -Iinclude pre7.C"

Week 2 - C++ part 2	

 9/26/10	

Programming techniques	

 16	

Segmenting programs	

 Programs can be "
 split into several files "
 Compiled separately"
 and finally linked together"

 However functions defined in
another file have to be declared
before use!"

 The function declaration is similar
to the definition "
 but has no body!"
 parameters need not be given

names"

 Easiest solution are header files.
Help maintain consistency."

 file “square.h”"
double square(double);

 file “square.C”"
#include “square.h”

double square(double x) {

 return x*x;

}

 file “main.C”"
#include <iostream>

#include “square.h”

int main() {

 std::cout << square(5.);

}

Compiling and linking	

 Compile the file square.C, with the -c option (no linking)"
 g++ -c square.C

 Compile the file main.C, with the -c option (no linking)"
 g++ -c main.C

 Link the object files"
 g++ main.o square.o

Week 2 - C++ part 2	

 9/26/10	

Programming techniques	

 17	

Include guards	

 The following fails to compile :"
 #include “incl.h”
#include “incl.h”

 Try it:"
 g++ -c guard.C

 Add include guards to incl.h and try again:"
 #ifndef SQUARE_H
#define SQUARE_H

int x;
#endif

Assert in header <cassert>	

 are a way to check preconditions, postconditions and invariants"
 <cassert> looks something like:"

#ifdef NDEBUG

#define assert(e) ((void)0)

#else

#define assert(e) …

#endif

 If the expression is false the program will abort and print the
expression with a notice that this assertion has failed"

 Try it"
 g++ assert.C

Week 2 - C++ part 2	

 9/26/10	

Programming techniques	

 18	

Making a library	

 Often used *.o files can be packed into a library, e.g.:"
 ar ruc libtest.a square.o
ranlib libtest.a
g++ main.C -L. -ltest

 ar creates an archive, more than one object file can be specified"
 The name must be libsomething.a

 ranlib adds a table of contents (not needed on some platforms)"

 -L specifes the directory where the library"

 -lsomething specifies looking in the librarylibsomething.a

How libraries work	

 What is done here:"
 g++ main.C -L. -ltest"

 After compilation the object files are linked"

 If there are undefined functions (e.g. square) the libraries are
searched for the function, and the needed functions linked with the
object files"

 Note that the order of libraries is important"
  if liba.a calls a function in libb.a, you need to link in the right

order: -la -lb"

Week 2 - C++ part 2	

 9/26/10	

Programming techniques	

 19	

Documenting your library	

  After you finish your library, document it with"

 Synopsis of all functions, types and variables declared"

 Semantics"
  what does the function do?"

 Preconditions"
  what must be true before calling the function"

 Postconditions"
  what you guarantee to be true after calling the function if the precondition was true"

 What it depends on"

 Exception guarantees (will be discussed later)"

 References or other additional material"

Example documentation	

 Header file “square.h” contains the function “square”: 

 Synopsis: 
double square(double x);

 square calculates the square of x 

 Precondition: the square can be represented in a double  
std::abs(x) <= std::sqrt(std::numeric_limits<double>::max())

 Postcondition: the square root of the return value agrees with the
absolute value of x within floating point precision: 
std::sqrt(square(x)) - std::abs(x) <=
std::abs(x) *std::numeric_limits<double>::epsilon

 Dependencies: none"

 Exception guarantee: no-throw"

Week 2 - C++ part 2	

 9/26/10	

Programming techniques	

 20	

The cost of a function call	

 A function call is expensive:"
 Values in registers might need to be saved in memory"
 Function arguments might need to be stored in memory"
 A jump to the function is done, stopping all pipelines"
 Function arguments might need to be read from memory"
 Only then can the function start to execute"

 Let us look at the assembly code of a simple example"

 g++ -c -save-temps -O0 functioncall.c
 g++ -c -save-temps -O functioncall.c
 g++ -c -save-temps -finline-functions functioncall.c

 Look at functioncall.s - What can you observe?"
 Can you observe automatic “inlining”?"

Inlining	

 A function call takes several hundred CPU cycles"
 For simple functions that are called often this is a big waste of time:"

 float square(float);

int main() {
 float sq[10000];
 for (int k=0;k<10000;++k)
 sq[k] = square(k);
}"

 It is better to inline the function"
 inline float square(float x) {return x*x;}

 This leads to the same optimized code as:"
 sq[k] = float(k)*float(k);

 Note that for an inline function not only the declaration but the
complete function body must be in the header file!"

Week 2 - C++ part 2	

 9/26/10	

Programming techniques	

 21	

Recursion	

 is elegant and allowed  
unsigned long fac(unsigned short k) {
 return k ? k*fac(k-1) : 1;
}

 however these function calls cannot be inlined!"

 non-recursive version often faster 
unsigned long fac(unsigned short k) {
 unsigned long r=1;
 if(k) do { r *=k;} while(--k);
 return r;
}

 exception: template codes, as they are evaluated at compile time.
We will come back to that later.

Default function arguments	

 are sometimes useful  

float root(float x, unsigned int n=2); // n-th root of x 

int main()
{
 root(5,3); // cubic root of 5  
 root(3,2); // square root of 3
 root(3); // also square root of 3 
}  

 the default value must be a constant! 

unsigned int d=2;
float root(float x, unsigned int n=d); // not allowed!"

