Particle Physics Phenomenology I

HS 10, Series 6

Due date: 05.11.2010, 1 pm

Exercise 1 Show that if we postulate the commutation relations

$$
\begin{gathered}
{\left[a(\vec{p}), a(\vec{q})^{\dagger}\right]=\delta^{3}(\vec{p}-\vec{q})(2 \pi)^{3} 2 E_{\vec{p}}} \\
{[a(\vec{p}), a(\vec{q})]=\left[a(\vec{p})^{\dagger}, a(\vec{q})^{\dagger}\right]=0}
\end{gathered}
$$

for a and a^{\dagger} we arrive at the following commutation relations for the field and the canonical momentum density conjugate to it

$$
\begin{gathered}
{\left[\phi(\vec{x}, t), \Pi\left(\overrightarrow{x^{\prime}}, t\right)\right]=i \delta^{3}\left(\vec{x}-\overrightarrow{x^{\prime}}\right)} \\
{\left[\phi(\vec{x}, t), \phi\left(\overrightarrow{x^{\prime}}, t\right)\right]=\left[\Pi(\vec{x}, t), \Pi\left(\overrightarrow{x^{\prime}}, t\right)\right]=0 .}
\end{gathered}
$$

Exercise 2 We define

$$
\Delta^{ \pm}(x)=-\int_{C^{ \pm}} \frac{d p^{0}}{2 \pi} \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{e^{-i p x}}{p^{2}-m^{2}}
$$

where C^{+}and C^{-}are contours in the complex p^{0}-plane, C^{+}goes around $p^{0}=E_{\vec{p}}$ once in counterclockwise direction, C^{-}goes around $p^{0}=-E_{\vec{p}}$ once in counterclockwise direction.

- Use the residue theorem and the formula

$$
\int \frac{d^{3} p}{2 E_{\vec{p}}}=\int d^{4} p \delta\left(p^{2}-m^{2}\right) \Theta\left(p^{0}\right)
$$

to show

$$
\Delta^{ \pm}(x)=\mp i \int \frac{d^{4} p}{(2 \pi)^{3}} \delta\left(p^{2}-m^{2}\right) e^{\mp i p x} \Theta\left(p^{0}\right)
$$

- Show that $[\phi(x), \phi(y)]=i \Delta(x-y)=i\left(\Delta^{+}(x-y)+\Delta^{-}(x-y)\right)$ vanishes for spacelike $\left((x-y)^{2}<0\right)$ separation $x-y$.

