Particle Physics Phenomenology I

HS 10, Series 5
Due date: 29.10.2010, 1 pm

Exercise 1

(i) Show that the chirality is not a good quantum number for a massive fermion by checking $\left[H, \gamma_{5}\right]$.
(ii) Show that helicity is conserved although it depends on the choice of the coordinate system.

Exercise 2 Show that

$$
\gamma^{5} u=\left(\begin{array}{cc}
\vec{\sigma} \cdot \vec{p} & 0 \tag{1}\\
0 & \vec{\sigma} \cdot \vec{p}
\end{array}\right) u
$$

holds in the ultrarelativistic limit, i.e. that the chirality operator γ^{5} coincides with the helicity operator.

Exercise 3 The Lorentz gauge condition $k \cdot \epsilon_{\lambda}(k)=0$ is not sufficient to fix the two independent components of the polarisation vectors $\epsilon_{\lambda}^{\mu}(k)$. The "axial gauge" imposes another condition, namely $n . \epsilon_{\lambda}(k)=0$ where n is some arbitrary 4 -vector which satisfies $n . k \neq 0$. Further more the polarisation vectors must satisfy the orthonormality condition

$$
\epsilon_{\lambda_{1}}(k) \cdot \epsilon_{\lambda_{2}}^{*}(k)=-\delta_{\lambda_{1} \lambda_{2}} .
$$

Show that the polarisation (sum) tensor of a massless spin 1 particle (e.g. photons, gluons) is given by

$$
\begin{equation*}
P^{\mu \nu} \equiv \sum_{\lambda} \epsilon_{\lambda}^{\mu}(k) \epsilon_{\lambda}^{* \nu}(k)=-g^{\mu \nu}+\frac{n^{\mu} k^{\nu}+n^{\nu} k^{\mu}}{n . k}-\frac{n^{2} k^{\mu} k^{\nu}}{(n . k)^{2}} . \tag{2}
\end{equation*}
$$

Hint: Write down all possible rank 2 tensors upon which $P^{\mu \nu}$ may depend. Then use the 5 stated conditions to determine their coefficients.

Remark: In QED it is sufficient to take

$$
\begin{equation*}
P^{\mu \nu} \equiv \sum_{\lambda} \epsilon_{\lambda}^{\mu}(k) \epsilon_{\lambda}^{\nu}(k)=-g^{\mu \nu} \tag{3}
\end{equation*}
$$

This is due to the Takahashi-Ward identity which demands that $k_{\mu} M^{\mu}=0$ for some n-point greensfunction M^{μ} (matrix element) which has an external photon of momentum k_{μ}.

