Particle Physics Phenomenology I

HS 10, Series 10

Due date: 10.12.2010, 1 pm

Exercise 1 The generators $T^{a}(R)$ of any representation R obey the commutation rules

$$
\begin{equation*}
\left[T^{a}(R), T^{b}(R)\right]=i f^{a b c} T^{c}(R) \tag{1}
\end{equation*}
$$

Show that the generators T^{a} of the adjoint representation, given by $\left(T^{a}\right)_{b c}=-i f_{a b c}$, satisfy this commutation relations.
Hint: Use the Jacobi Identity ($\left.\left[\left[T^{a}, T^{b}\right], T^{c}\right]+\left[\left[T^{b}, T^{c}\right], T^{a}\right]+\left[\left[T^{c}, T^{a}\right], T^{b}\right]=0\right)$.
Exercise 2 Consider soft radiative QCD corrections to a quark scattering off an electromagnetic current.

a) Show that (in the soft limit) the Matrix element becomes

$$
M_{i j}^{\mu \alpha a}=\left(-i e \bar{u}_{2} \gamma^{\mu} u_{1}\right) J_{i j}^{\alpha a}(1+O(k))
$$

where

$$
J_{i j}^{\alpha a}=-g\left(T^{a}\right)_{j i}\left[\frac{p_{2}^{\alpha}}{p_{2} \cdot k}-\frac{p_{1}^{\alpha}}{p_{1} \cdot k}\right] .
$$

Hence prove that $J_{i j}^{\alpha a} k_{\alpha}=0$ to show that that the current J is conserved.
b) Compute the square of the matrixelement, i.e.

$$
\left|M^{\mu \nu}\right|^{2}=\sum_{\lambda} \epsilon_{\alpha}(\lambda)\left(\epsilon^{*}\right)_{\beta}(\lambda) M_{i j}^{\mu \alpha a}\left(M^{*}\right)_{i j}^{\nu \beta a} .
$$

and show that the Matrix element square factorises into a soft (eikonal) part times the squared amplitude of the underlying leading order process $\left(\left|M_{0}^{\mu \nu}\right|^{2}\right)$ as follows

$$
\left|M^{\mu \nu}\right|^{2}=-g^{2} C_{F}\left(\frac{p_{1}^{2}}{p_{1} \cdot k}-\frac{2 p_{1} \cdot p_{2}}{p_{1} \cdot k p_{2} \cdot k}+\frac{p_{2}^{2}}{p_{2} \cdot k}\right)\left|M_{0}^{\mu \nu}\right|^{2} .
$$

Exercise 3 Using the fact that a QCD amplitude can be written as the product of a purely kinematical (Lorentz invariant) part times a colour part, calculate the colour factors that appear in the following squared matrix elements at leading order: $\left|\mathcal{M}\left(q q^{\prime} \longrightarrow q q^{\prime}\right)\right|^{2}$, $\left|\mathcal{M}\left(q \bar{q} \longrightarrow q^{\prime} \bar{q}^{\prime}\right)\right|^{2},|\mathcal{M}(q g \longrightarrow q g)|^{2},|\mathcal{M}(q \bar{q} \longrightarrow g g)|^{2}$.

