
Chapter 7

Unitary symmetries and QCD as a
gauge theory

Literature:

• Lipkin [23] (group theory concepts from a physicist’s point of view)

• Lee [24], chapter 20 (extensive treatment of Lie groups and Lie algebras in the
context of differential geometry)

Interactions between particles should respect some observed symmetry. Often, the proce-
dure of postulating a specific symmetry leads to a unique theory. This way of approach
is the one of gauge theories. The usual example of a gauge theory is QED, which
corresponds to a local U(1)-symmetry of the Lagrangian :

ψ → ψ� = eieqeχ(x)ψ, (7.1)

Aµ → A�
µ = Aµ − ∂µχ(x). (7.2)

We can code this complicated transformation behavior by replacing in the QED La-
grangian ∂µ by the covariant derivative Dµ = ∂µ + ieqeAµ.

7.1 Isospin SU(2)

For this section we consider only the strong interaction and ignore the electromagnetic
and weak interactions. In this regard, isobaric nuclei (with the same mass number A) are
very similar. Heisenberg proposed to interpret protons and neutrons as two states of the
same object : the nucleon:

|p� = ψ(x)

�
1
0

�

,

|n� = ψ(x)

�
0
1

�

.
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We note the analogy to the spin formalism of nonrelativistic quantum mechanics, which
originated the name isospin.

In isospin-space, |p� and |n� can be represented as a two-component spinor with I = 1
2
.

|p� has then I3 = +1
2
and |n� has I3 = −

1
2
.

Since the strong interaction is blind to other charges (electromagnetic charge, weak hy-
percharge), the (strong) physics must be the same for any linear combinations of |p� and
|n�. In other words, for,

|p� → |p�� = α |p� + β |n� ,

|n� → |n�� = γ |p� + δ |n� ,

for some α, β, γ, δ ∈ C, or,

|N� =

�
ψp

ψn

�

→ |N�� = U |N� , (7.3)

for some 2×2 matrix U with complex entries, the (strong) physics does not change if we
switch from |N� to |N�� to describe the system.

We remark at this point that this symmetry is only an approximate symmetry since it is
violated by the other interactions, and is hence not a symmetry of nature.

First we require the conservation of the norm �N|N� which we interpret as the number
of particles like in quantum mechanics. This yields,

�N|N� → �N�|N�� = �N|U†U|N�
!
= �N|N�

⇒ U†U = UU† = �⇒ U ∈ U(2). (7.4)

A general unitary matrix has 4 real parameters. Since the effect of U and eiϕU are the
same, we fix one more parameter by imposing,

det U
!
= 1 ⇒ U ∈ SU(2), (7.5)

the special unitary group in 2 dimensions. This group is a Lie group (a group which is
at the same time a manifold). We use the representation,

U = eiαjÎj , (7.6)

where the αj’s are arbitrary group parameters (constant, or depending on the spacetime

coordinate x), and the Îj’s are the generators of the Lie group.

We concentrate on infinitesimal transformations, for which αj � 1. In this approximation
we can write

U ≈ �+ iαjÎj. (7.7)
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The two defining conditions of SU(2), Eq. (7.4) and (7.5), imply then for the generators,

Î†j = Îj (hermitian), (7.8)

Tr Îj = 0 (traceless). (7.9)

In order for the exponentiation procedure to converge for noninfinitesimal αj’s, the gen-
erators must satisfy a comutation relation, thus defining the Lie algebra su(2) of the
group SU(2).

Quite in general, the commutator of two generators must be expressible as a linear com-
bination of the other generators 1. In the case of su(2) we have,

[Îi, Îj ] = iεijkÎk, (7.10)

where εijk is the totally antisymmetric tensor with ε123 = +1. They are characteristic of
the (universal covering group of the) Lie group (but independent of the chosen represen-
tation) and called structure constants of the Lie group.

The representations can be characterized according to their total isospin. Consider now
I = 1/2, where the generators are given by

Îi =
1

2
τi

with τi = σi the Pauli spin matrices (this notation is chosen to prevent confusion with
ordinary spin):

τ1 =

�
0 1
1 0

�

τ2 =

�
0 −i
i 0

�

τ3 =

�
1 0
0 −1

�

which fulfill [σi, σj] = 2iεijkσk. The action of the matrices of the representation (see
Eq. (7.6)) is a non-abelian phase transformation:

|N�� = ei
#»α·

#»τ
2 |N� .

For SU(2), there exists only one diagonal matrix (τ3). In general, for SU(N), the following
holds true:

• Rank r = N − 1: There are r simultaneously diagonal operators.

• Dimension of the Lie algebra o = N2 − 1: There are o generators of the group and
therefore o group parameters. E. g. in the case of SU(2)/{±�} ∼= SO(3) this means
that there are three rotations/generators and three angles as parameters.

1Since we are working in a matrix representation of SU(2) this statement makes sense. The difference
between the abstract group and its matrix representation is often neglected.
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Figure 7.1: The nucleons |n� and |p� form an isospin doublet.

Isospin particle multiplets (representations) can be characterized by their quantum num-
bers I and I3: There are 2I + 1 states. Consider for example once again the case I = 1/2.
There are two states, characterized by their I3 quantum number:

��
�I = 1

2
, I3 = +1

2

�
�
�I = 1

2
, I3 = −

1
2

�
�

=

�
|p�
|n�

�

.

This is visualized in Fig. 7.1, along with the action of the operators τ± = 1/2(τ1 ± iτ2):

τ− |p� =

�
0 0
1 0

��
1
0

�

=

�
0
1

�

= |n�

τ+ |n� = |p�

τ− |n� = τ+ |p� = 0.

This is the smallest non-trivial representation of SU(2) and therefore its fundamental
representation.

Further examples for isospin multiplets are

I multiplets I3

1
2

�
p
n

� �
K+

K0

� �
3
2He
3
1H

�
+1

2

−1
2

1




π+

π0

π−




+1
0
−1

3
2







Δ++

Δ+

Δ0

Δ−







+3
2

+1
2

−1
2

−3
2

where mΔ ≈ 1232MeV and mp,n ≈ 938MeV.

All I � 1 representations can be obtained from direct products out of the fundamental
I = 1/2 representation 2 where “2” denotes the number of states. In analogy to the
addition of two electron spins where the Clebsch-Gordan decomposition reads rep.1/2 ⊗
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rep.1/2 = rep.0 ⊕ rep.1 and where there are two states for the spin-1/2 representation, one
state for the spin-0 representation, and three states for the spin-1 representation, we have

2 ⊗ 2
� �� �

I=| 1
2
±1

2
|=0,1

= 1
����

isosinglet, I=0

⊕ 3
����

isotriplet, I=1

. (7.11)

However, there is an important difference between isospin and spin multiplets. In the latter
case, we are considering a bound system and the constituents carrying the spin have the
same mass. On the other hand, pions are not simple bound states. Their structure will be
described by the quark model.

7.1.1 Isospin invariant interactions

Isospin invariant interactions can be constructed by choosing SU(2) invariant interaction
terms L�. For instance, consider the Yukawa model, describing nucleon-pion coupling,
where

L�
πN = igN̄ #»τ N · #»π = igN̄ � #»τ N� · #»π � (7.12)

which is an isovector and where the second identity is due to SU(2) invariance. Infinites-
imally, the transformation looks as follows:

N� = UN U = �+
i

2
#»α · #»τ (7.13)

N̄ � = N̄U† U† = �−
i

2
#»α · #»τ = U−1 (7.14)

#»π � = V #»π V = �+ i #»α ·
#»
t . (7.15)

The parameters
#»
t can be determined from the isospin invariance condition in Eq. (7.12):

N̄τjNπj = N̄U−1τiUNVijπj.

With Vij = δij + iαk(tk)ij (cp. Eq. (7.15)) and inserting the expressions for U and U†, this
yields

τj =

�

�−
i

2
αkτk

�

τi

�

�+
i

2
αkτk

�

� �� �
= τi +

i
2
αk[τi, τk] + O(α2

k)

= τi +
i
2
αk2iεiklτl + O(α2

k)

�

δij + iαk(tk)ij

�

= τj + iαk {iεjklτl + τi(tk)ij}

= τj + iαkτi {iεjki + (tk)ij}� �� �
!
=0

⇒ (tk)ij = −iεkij.
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This means that the 3 × 3 matrices tk, k = 1, 2, 3, are given by the structure constants
(see Eq. (7.10)). For the commutator we therefore have

[tk, tl]ij = −εkimεlmj + εlimεkmj = εklmεmij = iεklm(−iεmij) = iεklm(tm)ij (7.16)

where the second identity follows using the Jacobi identity. This means that the matrices
tk fulfill the Lie algebra

[tk, tl] = iεklmtm.

The tks form the adjoint representation of SU(2).

7.2 Quark model of hadrons

It is experimentally well established that the proton and the neutron have inner structure.
The evidence is:

• Finite electromagnetic charge radius

�rp,n� = 0.8 · 10−15 m

(The neutron is to be thought of as a neutral cloud of electromagnetically interacting
constituents.)

• Anomalous magnetic moment

#»µ = g
q

2m
#»s gp = 5.59 gn = −3.83

• Proliferation of strongly interacting hadronic states (particle zoo)

p, n, Λ, Δ−, Ξ, Σ, Ω, . . .

The explanation for these phenomena is that protons and neutrons (and the other
hadrons) are bound states of quarks:

|p� = |uud�
|n� = |udd�

�

3 quark states.

The up quark and the down quark have the following properties

|u� : q = +
2

3
, I =

1

2
, I3 = +

1

2
, S =

1

2
;

|d� : q = −
1

3
, I =

1

2
, I3 = −

1

2
, S =

1

2
.
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Quarks Charge Baryon number

Up
1.5 − 3Mev

Charm
1270MeV

Top
171 000MeV

+2/3 e 1/3

Down
3.5 − 6MeV

Strange
105MeV

Bottom
4200MeV

−1/3 e 1/3

Leptons Charge Lepton number

e− µ− τ− − e 1
νe νµ ντ 0 1

Table 7.1: Quarks and leptons.

Thus, |u� and |d� form an isospin doublet and combining them yields the correct quantum
numbers for |p� and |n�. There are also quark-antiquark bound states: The pions form an
isospin triplet while the |η� is the corresponding singlet state (see Eq. (7.11)):

|π+� =
�
�ud̄

�

|π0� = 1√
2

�
|uū� −

�
�dd̄

��

|π−� = |dū�





triplet states, I = 1

|η� = 1√
2

�
|uū� +

�
�dd̄

���
singlet state, I = 0.

There are in total three known quark doublets:
�
|u�
|d�

�

� �� �
up/down

�
|c�
|s�

�

� �� �
charm/strange

�
|t�
|b�

�

� �� �
top/bottom

�
q = +2

3
, I3 = +1

2

q = −1
3
, I3 = −

1
2

�

.

These quarks can be combined to give states like, e. g., |Λ� = |uds� .

7.3 Hadron spectroscopy

7.3.1 Quarks and leptons

Experimental evidence shows that, in addition to the three quark isospin doublets, there
are also three families of leptons, the second type of elementary fermions (see Tab. 7.1).
The lepton families are built out of an electron (or µ or τ) and the corresponding neutrino.
The summary also shows the large mass differences between the six known quarks. All of
the listed particles have a corresponding antiparticle, carrying opposite charge and baryon
or lepton number, respectively.

Stable matter is built out of quarks and leptons listed in the first column of the family
table. Until now, there is no evidence for quark substructure and they are therefore con-
sidered to be elementary. Hadrons, on the other hand, are composite particles. They are
divided in two main categories as shown in the following table:
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Quarks Flavor Other numbers

Up, Down — S = C = B = T = 0
Charm C = +1 S = B = T = 0
Strange S = −1 C = B = T = 0
Top T = +1 S = C = B = 0

Bottom B = −1 S = C = T = 0

Table 7.2: Additional quantum numbers for the characterization of unstable hadronic
matter. Antiquarks have opposite values for these quantum numbers.

Type Matter Antimatter

Baryons qqq q̄q̄q̄
Mesons qq̄

Bound states such as |qq� or |qqq̄� are excluded by the theory of quantum chromodynamics
(see Sect. 7.4).

Unstable hadronic matter is characterized by the following additional flavor quantum
numbers: Charm (C), Strangeness (S), Beauty (B), and Topness (T ) (see Tab. 7.2). It is
important to remember that in strong and electromagnetic interactions both baryon and
flavor quantum numbers are conserved while in weak interactions only baryon quantum
numbers are conserved. Therefore, weak interactions allow heavy quarks to decay into the
stable quark family. The quark decay channels are shown in the following table:

Quark → Decay products

u, d stable
s uW−

c sW+

b cW−

t bW+

As we have seen, protons and neutrons are prominent examples of baryons. Their general
properties can be summarized as follows:

Proton Neutron

Quarks |uud� |udd�

Mass 0.9383GeV 0.9396GeV
Spin 1/2 1/2

Charge e = 1.6 · 10−19 C 0C
Baryon number 1 1

Lifetime stable: τ ≥ 1032 years unstable: τn→pe−νe = 887 ± 2 s

Production
gaseous hydrogen: ionization
through electric field

under 1MeV: nuclear reactors;
1 − 10MeV: nuclear reactions

Target for ex-
periments

liquid hydrogen liquid deuterium
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The respective antiparticles can be produced in high-energy collisions, e. g.

pp → ppp̄p with |p̄� =
�
�ūūd̄

�
or

pp → ppn̄n with |n̄� =
�
�ūd̄d̄

�
.

Recall that in Sect. 4.1 we calculate the energy threshold for the reaction pp → ppp̄p and
find that a proton beam colliding against a proton target must have at least | #»p | = 6.5GeV
for the reaction to take place.

7.3.2 Strangeness

We now take a more detailed look at the strangeness quantum number. In 1947, a new
neutral particle, K0, was discovered from interactions of cosmic rays:

π−p
s
→ K0Λ, with consequent decays: K0 w

→ π+π−, Λ
w
→ π−p. (7.17)

This discovery was later confirmed in accelerator experiments. The processes in Eq. (7.17)
is puzzling because the production cross section is characterized by the strong interaction
while the long lifetime (τ ∼ 90 ps) indicates a weak decay. In this seemingly paradoxical
situation, a new quantum number called “strangeness” is introduced. A sketch of produc-
tion and decay of the K0 is shown in Fig. 7.2. As stated before, the strong interaction
conserves flavor which requires for the production ΔS = 0. The decay, on the other hand,
proceeds through the weak interaction: The s-quark decays via s → uW−.

Baryons containing one or more strange quarks are called hyperons. With three consti-
tuting quarks we can have, depending on the spin alignment, spin-1/2 (|↑↓↑�) or spin-3/2
(|↑↑↑�) baryons (see Tab. 7.3).2 There are 8 spin-1/2 baryons (octet) and 10 spin-3/2
baryons (decuplet). Octet and decuplet are part of the SU(3) multiplet structure (see
Sect. 7.4).3 All hyperons in the octet decay weakly (except for the Σ0). They therefore
have a long lifetime of about 10−10 s and decay with |ΔS| = 1, e. g.

Σ+ → pπ0, nπ+

Ξ0 → Λπ0.

The members of the decuplet, on the other hand, all decay strongly (except for the Ω−)
with |ΔS| = 0. They therefore have short lifetimes of about 10−24 s, e. g.

Δ++(1230) → π+p

Σ+(1383) → Λπ+.

2The problem that putting three fermions into one symmetric state violates the Pauli exclusion prin-
ciple is discussed in Sect. 7.4.

3However, this “flavor SU(3)” is only a sorting symmetry and has nothing to do with “color SU(3)”
discussed in Sect. 7.4.
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Figure 7.2: Sketch of the reaction π−p → K0Λ and the decays of the neutral K0 and Λ.
Tracks detected in a bubble chamber (a). Feynman diagrams for the production and the
Λ decay (b). Notice that S(K0) = 1, |K0� = |ds̄� and S(Λ) = −1, |Λ� = |uds� . Source:
[8, p. 140].

Spin-1/2: Octet Spin-3/2: Decuplet

Baryon State Strangeness Baryon State Strangeness

p(938) |uud� 0 Δ++(1230) |uuu� 0
n(940) |udd� 0 Δ+(1231) |uud� 0
Λ(1115) |(ud − du)s� −1 Δ0(1232) |udd� 0
Σ+(1189) |uus� −1 Δ−(1233) |ddd� 0
Σ0(1192) |(ud + du)s� −1 Σ+(1383) |uus� −1
Σ−(1197) |dds� −1 Σ0(1384) |uds� −1
Ξ0(1315) |uss� −2 Σ−(1387) |dds� −1
Ξ−(1321) |dss� −2 Ξ0(1532) |uss� −2

Ξ−(1535) |dss� −2
Ω−(1672) |sss� −3

Table 7.3: Summary of the baryon octet and decuplet.
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Figure 7.3: Bubble chamber photograph (LHS) and line diagram (RHS) of an event showing
the production and decay of Ω−. Source: [25, p. 205].

The quark model, as outlined so far, predicts the hyperon |Ω−� = |sss� as a member of
the spin-3/2 decuplet. Therefore, the observation of the production,

K−p → Ω−K+K0,

and decay,

Ω− → Ξ0π−, Ξ0 → Λπ0, Λ → pπ−,

of the Ω− at Brookhaven in 1964 is a remarkable success for the quark model. A sketch
of the processes is given in Fig. 7.3. Note that the production occurs via a strong process,
ΔS = 0, while the decay is weak: |ΔS| = 1.

7.3.3 Strong vs. weak decays

Generally speaking, strong processes yield considerably shorter lifetimes than weak pro-
cesses. Consider, for instance, the following two decays,

Δ+ → p + π0 Σ+ → p + π0

τΔ = 6 · 10−24 s τΣ = 8 · 10−11 s

|uud� → |uud� +
1
√
2

�
|uū� +

�
�dd̄

��
|uus� → |uud� +

1
√
2

�
|uū� +

�
�dd̄

��

(strong) (weak).
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Quarks, u, d, s.

n
q q

s = 1�

s = 0�

Figure 7.4: Sketch of the possible spin configurations for quark-antiquark bound states.
The qq̄ pair is characterized by orbital excitations l (rotation) and radial excitations n
(vibration). Source: [8, p. 141].

The final state is identical in both decays but the lifetime is much longer for the weak
process. Since the final state is equal, this difference in lifetime must come from a difference
in the coupling constants. For τ ∼ 1/α2 where α is a coupling constant:

αweak

αstrong

∼

�
τΔ
τΣ

= 2.7 · 10−7.

7.3.4 Mesons

Mesons are quark-antiquark bound states: |qq̄� . In analogy to the spin states of a two-
electron system (and not to be confused with the isospin multiplets discussed on p. 128),
the |qq̄� bound state can have either spin 0 (singlet) or spin 1 (triplet) (see Fig. 7.4). Radial
vibrations are characterized by the quantum number n while orbital angular momentum
is characterized by the quantum number l. The states are represented in spectroscopic
notation:

n2s+1lJ

where l = 0 is labeled by S, l = 1 by P and so on. A summary of the n = 1, l = 0 meson
states is shown in Tab. 7.4. A summary of the states with l ≤ 2 can be found in Fig. 7.3.4.

7.3.5 Gell-Mann-Nishijima formula

Isospin is introduced in Sect. 7.1. The hadron isospin multiplets for n = 1, l = 0 are shown
in Fig. 7.6. This summary leads to the conclusion that the charge Q of an hadron with
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Figure 7.5: Summary of mesons from u, d s quarks for l ≤ 2. Cells shaded in grey are well
established states. Source: [8, p. 143].



138 CHAPTER 7. UNITARY SYMMETRIES AND QCD AS A GAUGE THEORY

Mesons (n = 1, l = 0)

11S0 (spin 0) 13S1 (spin 1)
π+(140)

�
�ud̄

�
ρ+(770)

�
�ud̄

�

π−(140) |ūd� ρ−(770) |ūd�

π0(135) 1/
√
2
�
�dd̄ − uū

�
ρ0(770) 1/

√
2
�
�dd̄ − uū

�

K+(494) |us̄� K∗+(892) |us̄�
K−(494) |ūs� K∗−(892) |ūs�
K0(498) |ds̄� K∗0(896) |ds̄�
K̄0(498)

�
�d̄s

�
K̄∗0(896)

�
�d̄s

�

η(547) ∼ 1/
√
6
�
�uū + dd̄ − 2ss̄

�
φ(1020) = ψ1 − |ss̄�

η�(958) ∼ 1/
√
3
�
�uū + dd̄ + ss̄

�
ω(782) = ψ2 1/

√
2
�
�uū + dd̄

�

Table 7.4: Summary of n = 1, l = 0 meson states.

baryon number B and strangeness S is given by

Q = I3 +
B + S

2

which is called Gell-Mann-Nishijima formula. As an example, consider the Ω− hyperon
where 0 + (1 − 3)/2 = −1.

7.4 Quantum chromodynamics and color SU(3)

The quark model, as discussed so far, runs into a serious problem: Since the quarks have
half-integer spin, they are fermions and therefore obey Fermi-Dirac statistics. This means
that states like

Δ++ =
�
�u↑u↑u↑

�
, S =

3

2

where three quarks are in a symmetric state (have identical quantum numbers) are for-
bidden by the Pauli exclusion principle.

The way out is to introduce a new quantum number that allows for one extra degree of
freedom which enables us to antisymmetrize the wave function as required for fermions:

Δ++ = N
�

ijk

εijk

�
�
�u

↑
i u

↑
ju

↑
k

�

where N is some normalization constant and the quarks come in three different “colors”:4

|q� → |q1,2,3� =




|q1�
|q2�
|q3�



 .

4The new charge is named “color” because of the similarities to optics: There are three fundamental
colors, complementary colors and the usual combinations are perceived as white.
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�
��
��
��
��
��

�����������������������

����
���������

Figure 7.6: Summary of hadron isospin multiplets. n = 1, l = 0. Source: [8, p. 147].

Since color cannot be observed, there has to be a corresponding new symmetry in the
Lagrangian due to the fact that the colors can be transformed without the observables
being affected. In the case of our new charge in three colors the symmetry group is SU(3),
the group of the special unitary transformations in three dimensions. The Lie algebra of
SU(3) is

�
T a, T b

�
= ifabcT c

where, in analogy to Eq. (7.10), fabc denotes the structure constants and where there are
8 generators T a (recall that o = N2 − 1 = 8, see p. 127) out of which r = N − 1 = 2 are
diagonal.

The fundamental representation is given by the 3 × 3 matrices T a = 1
2
λa with the Gell-

Mann matrices

λ1 =








τ1� �� �

0 1
1 0

0
0

0 0 0








λ2 =








τ2� �� �

0 −i
i 0

0
0

0 0 0








λ3 =








τ3� �� �

1 0
0 −1

0
0

0 0 0








λ4 =




0 0 1
0 0 0
1 0 0





λ5 =




0 0 −i
0 0 0
i 0 0



 λ6 =




0 0 0
0 0 1
0 1 0



 λ7 =




0 0 0
0 0 −i
0 i 0



 λ8 =
1
√
3




1 0 0
0 1 0
0 0 −2



 .
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One can observe that these matrices are hermitian and traceless,

λ†
a = λa Tr λa = 0.

Furthermore, one can show that

Tr
�
λaλb

�
= 2δab

and

λaijλ
b
kl = 2

�

δilδkj −
1

3
δijδkl

�

(Fierz identity).

The structure constants of SU(3) are given by

fabc =
1

4i
Tr ([λa, λb] λc)

and are antisymmetric in a, b, and c. The numerical values are

f123 = 1

f458 = f678 =

√
3

2

f147 = f156 = f246 = f257 = f345 = f367 =
1

2
fabc = 0 else.

As in the case of SU(2), the adjoint representation is given by the structure constants
which, in this case, are 8 × 8 matrices:

(ta)bc = −ifabc.

The multiplets (again built out of the fundamental representations) are given by the direct
sums

3 ⊗ 3̄ = 1 ⊕ 8 (7.18)

where the bar denotes antiparticle states and

3 ⊗ 3 ⊗ 3 = 1 ⊕ 8 ⊕ 8 ⊕ 10. (7.19)

The singlet in Eq. (7.18) corresponds to the |qq̄� states, the mesons (e. g. π), while the
singlet in Eq. (7.19) is the |qqq� baryon (e. g. p, n). The other multiplets are colored and
can thus not be observed.’Working out theSU(3) potential structure, one finds that an
attractive QCD potential exists only for the singlet states, while the potential is repulsive
for all other multiplets.
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The development of QCD outlined so far can be summarized as follows: Starting from the
observation that the nucleons have similar properties, we considered isospin and SU(2)
symmetry. We found that the nucleons n and p correspond to the fundamental repre-
sentations of SU(2) while the π is given by the adjoint representation. To satisfy the
Pauli exclusion principle, we had to introduce a new quantum number and with it a new
SU(3) symmetry of the Lagrangian. This in turn led us to multiplet structures where the
colorless singlet states correspond to mesons and baryons.

Construction of QCD Lagrangian We now take a closer look at this SU(3) trans-
formation of a color triplet,

|q� =




q1
q2
q3



 → |q�� =




q�1
q�2
q�3



 = eigsαaTa




q1
q2
q3



 = U |q� , (7.20)

where gs ∈ R is used as a rescaling (and will be used for the perturbative expansion) of
the group parameter α introduced previously. The reason of introducing it becomes clear
in the context of gauge theories.

In analogy to the QED current,

jµQED = eqeq̄γ
µq,

we introduce the color current 5, which is the conserved current associated with the
SU(3) symmetry,

jµa = gsq̄iγ
µT a

ijqj a = 1 · · · 8. (7.21)

In the same spirit, by looking at the QED interaction,

LintQED = −jµQEDAµ = eqeq̄γ
µqAµ,

yielding the vertex,

�
Aµ

q q

where we can see the photon – the electrically uncharged U(1) gauge boson of QED –, we

5The Einstein summation convention still applies, even if the color index i and j are not in an upper and
lower position. This exception extends also to the color indices a, b, ... of the gauge fields to be introduced.
There is no standard convention in the literature, and since there is no metric tensor involved, the position
of a color index, is merely an esthetic/readability problem.
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postulate an interaction part of the QCD Lagrangian of the form,

LintQCD = −jµaA
a
µ = gsq̄iγ

µT a
ijqjA

a
µ, (7.22)

which translates in the vertex (which is not the only one of QCD as we shall see),

�

Aa
µ

qj qi

Now there are 8 SU(3) gauge bosons Aa
µ for QCD : one for each possible value of a. They

are called gluons and are themselves colored.

Continuing with our analogy, we define the covariant derivative of QCD6,

Dµ = ∂µ�+ igsT
aAa

µ, (7.23)

and state that the QCD Lagrangian should have a term of the form,

L̃QCD = q̄(i /D −m)q. (7.24)

Up to this point, both QED and QCD look nearly identical. Their differences become
crucial when we look at local gauge symmetries. Such a transformation can be written,

|q(x)� → |q�(x)� = eigsαa(x)Ta

|q(x)� , (7.25)

and we impose as before that the Lagrangian must be invariant under any such transfor-
mation. This is equivalent of imposing,

D�
µ |q

�(x)�
!
= eigsαa(x)Ta

Dµ |q(x)�

⇔ �q̄�(x)| i /D
�
|q�(x)� = �q̄(x)| i /D |q(x)� .

For αa(x) � 1, we can expand the exponential and keep only the first order term,

D�
µ |q

�(x)� =
�
∂µ + igsT

cA�c
µ

�
(�+ igsαa(x)T

a) |q(x)�

!
= (�+ igsαa(x)T

a)
�
∂µ + igsT

cAc
µ

�

� �� �
Dµ

|q(x)� .

6Note that Dµ acts on color triplet and gives back a color triplet; ∂µ does not mix the colors, whereas
the other summand does (Ta is a 3×3 matrix).



7.4. QUANTUM CHROMODYNAMICS AND COLOR SU(3) 143

Making the ansatz A�c
µ = Ac

µ+δAc
µ where |δA

c
µ| � |A

c
µ| and expanding the former equation

to first order in δAc
µ (the term proportional to αa(x)δA

c
µ has also been ignored), we get,

igsT
cδAc

µ + igs(∂µαa(x))T
a + i2g2sT

cAc
µαa(x)T

a !
= i2g2sαa(x)T

aT cAc
µ

⇒ TcδAc
µ

!
= −(∂µαa(x))T

a + igs[T
a, T c]αa(x)A

c
µ,

or, renaming the dummy indices and using the Lie algebra su(3),

T aδAa
µ = −(∂µαa(x))T

a − gsfabcT
aαb(x)A

c
µ ∀T a

⇒ A�a
µ = Aa

µ − ∂µαa(x)� �� �
like in QED

− gsfabcαb(x)A
c
µ� �� �

non-abelian part

. (7.26)

Eq. (7.26) describes the (infinitesimal) gauge transformation of the gluon field.

In order for the gluon field to become physical, we need to include a kinematical term
(depending on the derivatives of the field). Remember the photon term of QED,

LphotonQED = −
1

4
FµνF

µν Fµν = ∂µAν − ∂νAµ,

where the last is gauge invariant. As we might expect from Eq. (7.26), the non-abelian
part will get us into trouble. Let’s look at,

δ(∂µA
c
ν − ∂νA

c
µ) = −∂µ∂ναa + ∂ν∂µαa − gsfabcαb(∂µA

c
ν − ∂νA

c
µ)

− gsfabc
�
(∂µαb)A

c
ν − (∂ναb)A

c
µ

�
.

We remark that the two first summands cancel each other and that the third looks like
the SU(3) transformation under the adjoint representation.

We recall that,

qi → q�i = (δij + igsαaT
a
ij)qj (fundamental representation)

Ba → B�
a = (δac + igsαbt

b
ac)Bc (adjoint representation)

respectively, where,

tbac = −ifbac = ifabc.

Hence, if F a
µν transforms in the adjoint representation of SU(3), we should have,

δF a
µν

!
= −gsfabcαbF

c
µν.

We now make the ansatz,

F a
µν = ∂µA

a
ν − ∂νA

a
µ − gsfabcA

b
µA

c
ν, (7.27)
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and prove that it fulfills the above constraint.

δF a
µν =δ(∂µA

a
ν − ∂νA

a
µ) − gsfabcδ(A

b
µA

c
ν)

= − gsfabcαb(∂µA
c
ν − ∂νA

c
µ) − gsfabc

�
(∂µαb)A

c
ν − (∂ναb)A

c
µ

�

− gsfabc
�
−(∂µαb)A

c
ν + (∂ναb)A

c
µ

�
− gsfabc

�
−gsfbdeαdA

e
µA

c
ν − gsfcdeαdA

b
µA

e
ν

�
,

Using,

fabcfbdeαdA
e
µA

c
ν = fabefbdcαdA

c
µA

e
ν = facefcdbαdA

b
µA

e
ν,

and

faecfdbc − facbfdec = (iT a
ec)(iT

d
cb) − (iT d

ec)(iT
a
cb) =

�
T a, T d

�
eb
= ifadcT

c
eb,

we get the desired result.

We check finally that a kinematic term based on the above definition of F a
µν is gauge

invariant :

δ
�
F a
µνF

µν
a

�
= 2Fµν

a δF a
µν = −2gs fabc����

=−fcba

αb F
µν
a F c

µν� �� �
=Fµν

c Fa
µν

= 0.

Finally, we get the full QCD Lagrangian,

LQCD = −
1

4
Fa
µνF

µν
a + q̄(i /D −mq)q, (7.28)

with /D and Fa
µν definded by Eqs. (7.23) and (7.27) respectively.

This Lagrangian is per construction invariant under local SU(3) gauge transformations.
It is our first example of a non-abelian gauge theory, a so-called Yang-Mills theory.

Structure of the kinematic term From the definition of F a
µν, Eq. (7.27), we see that,

F a
µνF

µν
a =

�
∂µA

a
ν − ∂νA

a
µ − gsfabcA

b
µA

c
ν

�
(∂µAν

a − ∂νAµ
a − gsfadeA

µ
dA

ν
e) ,

will have a much richer structure than in the case of QED.

First, we have – as in QED – a 2-gluon term
�
∂µA

a
ν − ∂νA

a
µ

�
(∂µAν

a − ∂νAµ
a) corresponding

to the gluon propagator,

�
k

µ, a ν, b

= −
gµν

k2
δab. (7.29)
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Then we have a 3-gluon term
�
−gsfabcA

b
µA

c
ν

�
(∂µA

ν
a − ∂νAµ

a) yielding a 3-gluon vertex

�Aa
µ(k1) Ac

λ(k3)

Ab
ν(k2)

= gsfabc [gµν(k1 − k2)λ + gνλ(k2 − k3)µ + gλµ(k3 − k1)ν] . (7.30)

Finally we have also a 4-gluon term
�
−gsfabcA

b
µA

c
ν

�
(−gsfadeA

µ
dA

ν
e) yielding the 4-gluon

vertex

�
Aa

µ(k1)

Ab
ν(k2)

Ad
ρ(k4)

Ac
λ(k3)

= −ig2s [fabefcde(gµλgνρ − gµρgνλ) + fadefbce(gµνgλρ − gµλgνρ) + facefbde(gµρgνλ − gµνgρλ)]
(7.31)

Unlike in QED, gluons are able to interact with themselves. This comes from the fact that
the theory is non-abelian. As a consequence, there is no superposition principle for QCD:
the field of a system of strongly interacting particles is not the sum of the individual
fields. Thence, there is no plane wave solution to QCD problems, and we cannot make
use of the usual machinery of Green’s functions and Fourier decomposition. Up to now
there is no known solution.

7.4.1 Strength of QCD interaction

In QED, when we take a term of the form,

�
�
�
�
�
�
�
�
��

e e

�
�
�
�
�
�
�
�
�
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where the �denotes some other part of the Feynman diagram, the expression is pro-
portional to e2 = 4πα.

In the case of QCD, we have a few more possibilities. We look at the general SU(n) case.
The QCD result can be found by setting n = 3.

First, for the analogous process to the one cited above :
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�i k

j j

a a

gsT
a
ij gsT

a
jk

�
�
�
�
�
�
�
�
�
�
�
�
�
�

which is proportional to g2sT
a
ijT

a
jk = 4παsCFδik, where

CF =
n2 − 1

2n
, (7.32)

is the color factor, the Casimir operator of SU(n). To find it, we used one of the Fierz
identities (see exercises), namely,

T a
ijT

a
jk =

1

2

�

δikδjj −
1

n
δijδjk

�

=
1

2

�

nδik −
1

n
δik

�

=
n2 − 1

2n
δik.

Next we look at,
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�a b

i i

j j

gsT
a
ij gsT

b
ji

�
�
�
�
�
�
�
�
�
�
�
�
�
�

which is proportional to g2sT
a
ijT

b
ji = 4παsTF δ

ab, where

TF =
1

2
. (7.33)

To find it, we used the fact that,

Tr
�
T aT b

�
=

1

2
δab.
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Finally we investigate the case where,
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�a d

b b

c c

gsfabc gsfdbc

�
�
�
�
�
�
�
�
�
�
�
�
�
�

which is proportional to g2sfabcfdbc = 4παsCAδ
ad, where

CA = n. (7.34)

To find it, we used the relation,

fabc = −4iTr
��
T a, T b

�
T c
�
,

that we have shown in the beginning of this section.

In the case of QCD, CF = 4
3
, TF = 1

2
, CA = 3. From the discussion above, we can heuris-

tically draw the conclusion that gluons tend to couple more to other gluons, than to
quarks.

At this stage, we note two features specific to the strong interaction, which we are going
to handle in more detail in a moment :

• Confinement : At low energies (large distances), the coupling becomes very large,
so that the perturbative treatment is no longer valid, an the process of hadronization
becomes inportant. This is the reason why we cannot observe color directly.

• Asymptotic freedom : At high energies (small distances) the coupling becomes
negligible, and the quarks and gluons can move almost freely.

As an example, of typical QCD calculation, we sketch the calculation of the

Gluon Compton scattering

g(k) + q(p) → g(k�) + q(p�).

There are at first sight two Feynman diagrams coming into the calculation,

�
k + p, lp, i

k, a

p�, j

k�, b

�

+ �
p − k�, l�p, i

k, a

p�, j

k�, b
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which yields the following scattering matrix element,

−iMfi = − ig2s

�

ū(p�)/ε∗(k�)
1

/p + /k −m
/ε(k)u(p)T b

jlT
a
li

+ū(p�)/ε(k)
1

/p − /k
�
− m

/ε∗(k�)u(p)T b
jl�T

a
l�i

�

. (7.35)

We start by checking the gauge invariance (Mfi must vanish under the substitution
εµ(k) → kµ):

−iM�
fi = ig2s ū(p

�)/ε(k�)u(p)
�
T b
jiT

a
li − Ta

jl�T
b
l�i

�
,

where

T b
jiT

a
li − Ta

jl�T
b
l�i =

�
T b, T a

�
ji
= ifbacT

c
ki �= 0!

So we need another term, which turns out to be the one corresponding to the Feynman
diagram,

�p� − p, c

p, i

k, a

p�, j

k�, b

The calculation of the gluon-gluon scattering goes analogously. We need to consider the
graphs,

� +� +� +�
.

7.4.2 QCD coupling constant

To leading order, a typical QED scattering process takes the form,
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�γ(q)

e−(p) e−(p�)

with q2 = (p� − p)2 ≤ 0.

In the Coulomb limit (long distance, low momentum transfer), the potential takes the
form,

V (R) = −
α

R
R �

1

me

≈ 10−11 [cm]. (7.36)

When R ≤ m−1
e , quantum effects become important (loop corrections, also known as

vacuum polarization), since the next to leading order (NLO) diagram,

�e+e−

starts to play a significant (measurable) role. This results in a change of the potential to,

V (R) = −
α

R

�

1 +
2α

3π
ln

1

meR
+O(α2)

�

= −
ᾱ(R)

R
, (7.37)

where ᾱ(R) is called the effective coupling.

We can understand the effective coupling in analogy to a solid state physics example : in
an insulator, an excess of charge gets screened by the polarization of the nearby atoms.
Here we create e+e− pairs out of the vacuum, hence the name vacuum polarization.

As we can see from Eq. (7.37), the smaller the distance R ≤ m−1
e , the bigger the observed

“charge” ᾱ(R). What we call the electron charge e (or the fine structure constant α) is the
limiting value for very large distances or low momentum transfer as shown in Fig. 7.4.2.

For example the measurements done at LEP show that, ᾱ(Q2 = m2
Z) ≈

1
128

> α.

In the case of QCD, we have at NLO, the following diagrams,
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Figure 7.7: Evolution of the effective electromagnetic coupling with distance and energy
(Q2 = −q2).
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We can picture the screening/antiscreening phenomenon as follows,
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� �
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Figure 7.8: Screening and antiscreening.

For QCD, the smaller the distance R (or the bigger the energy Q2), the smaller the
observed coupling ᾱs(R). At large distances, ᾱs(R) becomes comparable with unity, and
the perturbative approach breaks down as we can see in Fig. 7.4.2. The region concerning
confinement and asymptotic freedom are also shown.
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� (R)

R

��(Q�)

Q�

s s

asymptotic
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asymptotic
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�      ≈ 200 MeVQCD

Figure 7.9: Evolution of the effective strong coupling with distance and energy (Q2 = −q2).

The β-function of QCD In the renormalization procedure of QCD, we get a differen-
tial equation for αs(µ

2) where µ is the renormalization scale,

µ2
∂αs

∂(µ2)
= β(αs) (7.38)

β(αs) = −αs

�

β0
αs

4π
+ β1

�αs

4π

�2
+ β2

�αs

4π

�3
+ · · ·

�

, (7.39)

with

β0 =
11

3
nc −

2

3
nf = 11 −

2

3
nf (NLO) (7.40)

β1 =
17

12
n2c −

5

12
ncnf −

1

4

�
n2c − 1

2nc

�

nf , (NNLO) (7.41)

where nc is the number of colors and nf is the number of quark flavors. These two
numbers enter into the calculation through gluon respectively quark loop corrections to
the propagators.

We remark at this stage that unless nf ≥ 17 7, β0 > 0, whereas in the case of QED, we
get,

βQED0 = −
4

3
< 0. (7.42)

This fact explains the completely different behavior of the effective couplings of QCD and
QED.

To end this chapter, we will solve Eq. 7.39 retaining only the first term of the power

7As of 2009, only 6 quark flavors are known and there is experimental evidence (decay witdth of the
Z0 boson) that there are no more than 3 generations with light neutrinos.
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expansion of β.

µ2
∂αs

∂(µ2)
= −

β0
4π

α2
s

∂αs

α2
s

= −
β0
4π

∂(ln µ2)

αs(Q2)�

αs(Q2
0)

dαs

α2
s

= −
β0
4π

lnQ2�

lnQ2
0

d(ln µ2),

and hence,

1

αs(Q2)
=

1

αs(Q2
0)

+
β0
4π

ln
Q2

Q2
0

. (7.43)

We thus have a relation between αs(Q
2) and αs(Q

2
0), giving the evolution of the effective

coupling.

A mass scale is also generated, if we set,

1

αs(Q2 = Λ2)
= 0 ⇒ αs(Λ

2) = ∞.

Choosing Λ = Q0, we can rewrite Eq. (7.43) as,

αs(Q
2) =

4π

β0 ln
Q2

Λ2

. (7.44)


