
Chapter 6

Tests of QED

In the previous chapter elements of the quantum electrodynamics theory are discussed. We
now turn to precision tests of the theory which usually consist in the measurement of the
electromagnetic fine structure constant α in different systems. Experimental results are
compared with theoretical predictions. The validation process requires very high precision
in both measurements and theoretical calculations. QED is then confirmed to the extent
that these measurements of α from different physical sources agree with each other. The
most stringent test of QED is given by the measurement of the electron magnetic moment.
However, several other experimental tests have been performed in different energy ranges
and systems:

• Low energy range, accessible with small experiments;

• High energy range, accessible with particle colliders (e.g. e+e− colliders);

• Condensed matter systems (quantum Hall effect, Josephson effect).

As we will see, the achieved precision makes QED one of the most accurate physical
theories constructed so far.

6.1 Measurement of the electron anomalous mag-

netic moment

6.1.1 Electron magnetic moment

A rotating electrically charged body creates a magnetic dipole. In classical analogy, this
is also the case for the spinning electron. External magnetic fields exert a torque on the
electron magnetic moment. Electrons have an intrinsic magnetic moment µ, related to
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their spin s:

µ = −g
e

2m
s = −

g

2

e

2m
(6.1)

where e is the unit charge and m the electron mass. In the case of electrons the magnetic
moment is anti-parallel to the spin. The g-factor is equal to 2, as calculated from Dirac’s
equation:

a ≡
g − 2

2
= 0.

Corrections to the g-factor are given by higher order QED contributions as well as hadronic
and weak interactions. There could be additional contributions from physics beyond the
Standard Model (SM):

g

2
= 1 + aQED(α) + ahadronic + aweak + anew.

When adding the corrections we usually talk of the anomalous magnetic moment of the
electron.

6.1.2 QED: higher order corrections

The one-loop corrections to the magnetic moment are due to vacuum fluctuation and
polarization effects. A corresponding diagram is for example

�photon

lepton

The textbook calculation of the one-loop corrections gives corrections ∼ 10−3 (see [14,
pp. 189]):

a =
α

2π
≈ 0.0011614.

Hadronic and weak interactions are calculated (within the SM) to be very small and
negligible, respectively.

As we will see, the precision achieved by experimental results needs QED predictions with
α4 precision.
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Figure 6.1: Most accurate measurements of the electron g/2. Source: [16, p. 177].

6.1.3 g/2 measurements

Nowadays the precision of the g/2 measurements is below 10−12 as is shown in Fig. 6.1.
The latest measurements are 15 times more precise than the previous result which stood
for about 20 years. As one can see in Fig. 6.1, the latest value is shifted by 1.7 standard
deviations with respect to the previous result from 1987.

So, how did we get to this astonishing precision?

6.1.3.1 Experiment

The main ingredients of the experiment are:

• Single-electron quantum cyclotron
A Penning trap suspends and confines the electron in an atom-like state.

• Fully resolved cyclotron and spin energy levels
Accurate measurements of the resonant frequencies of driven transitions between
the energy levels of this homemade atom—an electron bound to the trap—reveals
the electron magnetic moment in units of Bohr magnetons, g/2.

• Detection sensitivity sufficient to detect one quantum transitions
Frequency detection sensitivity in the radio and microwave region.

The Penning trap confines electrons by using a strong vertical magnetic field B for radial
confinement and a quadrupole electric field for axial confinement (see Fig. 6.2(a)). The
magnetic field is produced by a solenoid while the electric field is produced by three
electrodes: one ring and two endcaps. A sketch of the electron trajectory is shown in
Fig. 6.2(b). The trajectory in the radial plane is characterized by two frequencies: The
magneton frequency ω− and the modified cyclotron frequency ω+. The cyclotron frequency
is then ω = ω++ω−. Since there is also a low-frequency oscillation in the z-direction, the
overall trajectory has the shown form.
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(a) (b)

Figure 6.2: Sketch of the fields and the electron trajectory in a Penning trap. Confinement
is achieved by a vertical magnetic field and a quadrupole electric field. Source: [17]. (a)
The magneton frequency ω− and the modified cyclotron frequency ω+ contribute to the
electron trajectory as well as a low-frequency oscillation in z-direction. (b)

A non-relativistic electron in a magnetic field has the following energy levels:1

E(n,ms) =
g

2
hνcms +

�

n+
1

2

�

hνc (6.2)

depending on the cyclotron frequency

νc =
eB

2πm
(6.3)

and on the spin frequency

νs =
g

2
νc =

g

2

eB

2πm
. (6.4)

Here n is the principal quantum number and ms the spin quantum number. Eq. (6.4)
yields

g

2
=

νs
νc
= 1 +

νs − νc
νc

≡ 1 +
νa
νc
.

Since νs and νc differ only by one part per 10
3, measuring νa and νc to a precision of one

part per 1010 gives g/2 to one part per 1013.

This technique of measuring g/2 has two main advantages:

1See e. g. [18, § 112].
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Figure 6.3: Lowest cyclotron and spin levels of an electron in a Penning trap. Source: [16,
p. 180, modified].

1. One can measure the ratio of two frequencies to very high precision.

2. Since the B field appears in both numerator and denominator (see Eq. (6.4)), the
dependence on the magnetic field cancels in the ratio.

Including the relativistic corrections, Eq. (6.2) is modified and the energy levels are given
by:

E(n,ms) =
g

2
hνcms +

�

n+
1

2

�

hν̄c −
1

2
hδ

�

n+
1

2
+ms

�2

� �� �
relativistic correction term

where ν̄c denotes the cyclotron frequency, shifted due to the Penning trap. Higher states
are excited via microwave radiation. The experiment measures the following transition
frequencies (see Fig. 6.3):

f̄c ≡ ν̄c −
3

2
δ, corresponding to (n,ms) = (1, 1/2)→ (0, 1/2) and

ν̄a ≡
g

2
νc − ν̄c, corresponding to (0, 1/2)→ (0,−1/2)

with the cyclotron frequency νc ∼ 150GHz.

A sketch of the experimental setup is shown in Fig. 6.4(a) and 6.4(b). A Penning trap is
used to artificially bind the electron in an orbital state. For confinement, a high voltage
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Electron Magnetic Moment 18
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Figure 6.4: Sketch of the experimental setup. Overview of experimental apparatus. Source:
[16, p. 185]. (a) The Penning trap cavity is used to confine a single electron and to inhibit
spontaneous emission. Source: [16, p. 182]. (b)

(100V) is applied between the cylindric and endcap contacts. Since νc ∝ B (see Eq. (6.3)),
a high magnetic field (5T) is necessary to increase the spacing between the cyclotron
energy levels. And finally, because the probability to occupy the orbital ground state is
proportional to the Boltzmann factor,

exp

�

−
hν̄c
kBT

�

,

very low temperatures (100mK) are needed.

In analyzing the results of Penning trap measurements, one has to correct for the fre-
quency shifts due to the cavity. This can be done by measuring at various frequencies (see
Fig. 6.5(a)). The result for g/2 given in [16] is

g/2 = 1.001 159 652 180 73 (28) [0.28 ppt]. (6.5)

6.1.3.2 Theoretical predictions

The QED calculations provide the prediction for g/2 up to the fifth power of α:

g

2
= 1 + C2

�α

π

�
+ C4

�α

π

�2
+ C6

�α

π

�3
+ C8

�α

π

�4
+ C10

�α

π

�5
+ · · ·+ ahadronic + aweak

(6.6)
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Fig. 8.1. compares the most accurate values.
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Figure 6.5: g/2 and fine structure constant. Four measurements of g/2 without (open) and
with (filled) cavity-shift corrections. The light gray uncertainty band shows the average of
the corrected data. The dark gray band indicates the expected location of the uncorrected
data given the result in Eq. (6.5) and including only the cavity-shift uncertainty. Source:
[16, p. 201]. (a) The most precise determinations of α. Source: [19, p. 264]. (b)

where

C2 = 0.500 000 000 000 00 (exact)

C4 = −0.328 478 444 002 90 (60)

C6 = 1.181 234 016 827 (19)

C8 = −1.914 4 (35)

C10 = 0.0 (4.6)

ahadronic = 1.682(20) · 10
−12.

From Eq. (6.6) and the theoretical predictions we can on the one hand measure the cou-
pling constant α (see Fig. 6.5(b)):

α−1 = 137.035 999 084 (33) (39) [0.24 ppb][0.28 ppb]

= 137.035 999 084 (51) [0.37 ppb]

and on the other hand, we can compare the measured g/2 with the expectation using α
from other measurements

g/2 = 1.001 159 652 180 73 (28) [0.28 ppt] (measured)

g(α)/2 = 1.001 159 652 177 60 (520) [5.2 ppt] (predicted).
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6.2 High energy tests

6.2.1 e+e− colliders

In addition to the low-energy experiments, QED has been tested also in high energy e+e−

collisions [20, 21, 22].

We discuss here the following reactions:

• Bhabha scattering : e+e− → e+e−

• Lepton pair production : e+e− → µ+µ−, τ+τ−

• Hadronic processes : e+e− → qq̄ → hadrons

The energy range 12GeV ≤
√
s ≤ 47GeV was investigated with the PETRA accelerator

at DESY (Hamburg). High energy ranges (90GeV ≤
√
s ≤ 200GeV) were covered by the

LEP collider at CERN (Geneva). However, electroweak contributions to the cross-sections,
like the one shown in Fig. 6.6, become considerable at these energies. Intermediate energies
were covered by TRISTAN and SLC. Table 6.1 gives an overview of the e+e− colliders.

�Z0

e−

e+

µ+

µ−

Figure 6.6: Electroweak contribution to Mfi(e
+e− → µ+µ−) at high energies.

The PETRA collider is shown in Fig. 6.7 as an example.

As an example for a typical detector we take a look at JADE (Figs. 6.8 and 6.9), using
the same numbering as in the figure.

1. Beam pipes counters.

2. End plug lead glass counters.

3. Pressure tank.
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Accelerator Experiment(s)
√
s [GeV] Lint [pb

−1]
SPEAR SPEAR 2-8 -
PEP ASP, DELCO, HRS, 0-29 300

MARK II, MAC
PETRA JADE, MARK J, 12-47 20

PLUTO, TASSO, CELLO
TRISTAN TRISTAN 50-60 20
SLC MARK II, SLD 90 25
LEP ALEPH, DELPHI, 90-200 200

OPAL, L3 700

Table 6.1: Table of e+e− colliders

Figure 6.7: PETRA storage ring

4. Muon chambers. Detect muons.

5. Jet chambers. Records the trajectories of the produced particles.

6. Time of flight counters. Measure the time necessary for the particle to get from the
collision center and thus its velocity.

7. Coil. Produces a magnetic field of 0.5 [T] parallel to the beam in the central re-
gion to measure the momentum of the particles by providing the curvature of their
trajectories.

8. Central lead glass counters.

9. Magnet yoke.

10. Muon filter.

11. Removable end plug.
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12. Beam pipe.

13. Tagging counter.

14. Mini beta quadrupole. Focus the beam to increase the luminosity of the beam in the
experiment.

15. Moving devices.

�

Figure 6.8: JADE detector : schematics

6.2.2 Detector elements

In order to help identify the particles produced in a collision (or their decay product) we
can determine their charge and invariant mass using the methods presented in chapter
4. This measurement proceeds mostly in the inner part of the detector, see Fig. 4.15, by
means of drift chambers or silicon trackers. If some of the produced particles are long
living (i.e. are stable or decay weakly), this setup gives also the possibility to detect a
decay vertex.

Further away from the beam axis are the calorimeters, whose function is to stop the
particles and measure the energy they deposit. There are mostly two types of calorimeters:
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Figure 6.9: JADE detector

electromagnetic and hadronic. The angular resolution is limited by the size of each detector
cell. Calorimeters are also able to measure neutral particles while the tracking devices
described above can only detect charged particles.

Electromagnetic calorimeters stop and measure the energy of electrons, positrons
and photons. All electromagnetically interacting particles leave at least a part of their
energy in this detector part.

Hadronic calorimeters stop and measure the energy of hadrons, e.g. protons, neutrons
and pions. Muons and antimuons are not stopped but leave some energy. Most modern
experiments are also surrounded by muon detectors in order to distinguish the energy
deposit of low energetic hadrons from the one of muons. Since it is practically impossible
to stop muons, this last detector records the direction of passage of muons and, eventually,
their momentum.

Fig. 6.10 shows the schematic view of the different signal hits for different types of particles.
The energy deposit is usually depicted by a histogram.

• Electron signature. Eletrons leave a curved trace in the inner tracking detector and
deposit all their energy in the electromagnetic calorimeter, where they are com-
pletely stopped. There is hence no signal stemming from electrons in detectors fur-
ther away from the collision point.

• Hadron signature. Charged hadrons leave a trace in the inner detector (curved by
the magnetic field), – whereas uncharged hadrons do not –, deposit a part of their
energy in the electromagnetic calorimeter and the rest of their energy in the hadronic
calorimeter.
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• Muon signature. Muons leave a curved trace in the inner detector and deposit some
energy in the electromagnetic and hadronic calorimeters whitout being stopped, and
then leave a signal in the muon detector.

• Photon signature. Photons do not leave a trace in the inner detector and are stopped
in the electromagnetic calorimeter.

Figure 6.10: Event reconstruction principle

6.2.3 Cross section measurement

To measure a cross section we divide the measured number of events N by the integrated
luminosity at that energy L(s),

σ(s) =
N

L(s)
. (6.7)

The last one is measured by counting the events occurring at small scattering angles and
using the relation,

σtheoee,γγ =
N(1− b)

(εA) · L
, (6.8)

where A and b depend on the detector geometry, while ε is the efficiency (the probability
to measure a particle, if it hits the detector).

Fig. 6.11 shows a typical integrated luminosity spectrum over the energy range 0−47GeV.
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Figure 6.11: Integrated luminosity for the JADE experiment at PETRA

Reminder : e+e− kinematics One can write the differential cross section as,

dσQED
dΩ

=
dσ0
dΩ
(1 + δrad), (6.9)

where δrad stands for the radiative corrections, i.e. terms coming form diagrams with more
vertices (proportional to α in the case of QED). These include emission of further low
energy exchange bosons and loop corrections.

6.2.4 Bhabha scattering

Leading order We first treat the leading order term, the one yielding dσ0/dΩ.

The following two diagrams contribute to the invariant amplitude :

� +

s-channel
�

t-channel
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Using Eq. (3.32) and the trace theorems of section 5.9, we get,

dσ0
dΩ

=
α2

4s





t2 + s2

u2� �� �
t-channel

+
2t2

us����
interference

+
t2 + u2

s2� �� �
s-channel






=
α2

4s

�
3 + cos2 ϑ

1− cosϑ

�2
. (6.10)

Note that it is divergent for ϑ → 0. Fig. 6.12 shows the cosϑ-dependence of each com-
ponent in Eq. (6.10). We remark that the differential cross section is dominated by the
t-channel component at all angles, and that the s-channel is almost constant, when com-
pared to the last. The interference term is always negative. It is small in magnitude
for large scattering angles (ϑ ∼ π ⇔ cosϑ ∼ −1) and diverges in the case of forward
scattering (ϑ = 0⇔ cosϑ = 1).

Fig. 6.13 shows the typical trace left in the electronic calorimeter by a scattered e+e−-pair.
Fig. 6.14 shows σe+e−→e+e− measured as a function of cosϑ for different center of mass

�

�

������������
����

���

��

�����

��������������
������������������

Figure 6.12: Relative magnitude of the different terms in dσ0/dΩ.

energies. It decreases following a 1/s-dependence.

Radiative corrections The diagrams contributing to the cross section and propor-
tional to higher powers of α (or e) are shown in Table 6.2.
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Figure 6.13: Typical event display of a Bhabha scattering event recorded by the Opal ex-
periment. The length of the blue histogram corresponds to the amount of energy deposited
in the electromagnetic calorimeter.

Figure 6.14: Energy and angle dependence of the cross section measured at TASSO and
compared to leading order calculations.
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�e3 : �������

�e4 : �������

�e�µ�τ�e �µ �τ
Table 6.2: Diagrams of radiative and loop corrections up to e4

Because of momentum conservation, the diagrams of the e3-order imply that the electron-
positron pair is no longer back-to-back after the collision. This effect is called acollinear-
ity. The acollinearity angle is the angle ξ = π − φ, where φ is the angle between the
direction of the scattered electron and the scattered positron; for a back-to-back flight
there is no acollinearity, thus ξ = 0. This angle has been measured at the JADE experi-
ment and confirms higher order QED corrections in a very impressive way (see Fig. 6.15).

6.2.5 Lepton pair production

Muon pair production Looking at different final states gives also different results.
We illustrate this by looking at the process e+e− → µ+µ−. This is the simplest process of
QED and is often used to normalize cross sections of other processes.

There is only one leading order Feynman diagram, namely,

�γ

e−

e+

µ−

µ+
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Figure 6.15: Comparison of measured acollinearity at JADE with the QED prediction.

and the leading order differential cross section is,

dσ0
dΩ

=
α2

4s

�
t2 + u2

s2

�

=
α2

4s
(1 + cos2 ϑ), (6.11)

which is shown in Fig. 5.9.

Fig. 6.16 shows an event candidate: low energy deposits in the electromagnetic calorimeter
and hits in the muon chambers.

Muon pair production : Z0 exchange Since only s-channel contributes to the
muon pair production, the diagram containing a Z0 boson instead of a photon 2,

2This contribution is also present in the case of Bhabha scattering, yet since the t-channel dominates
over the s-channel, the effect is virtually invisible.
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Figure 6.16: Typical event display of a muon pair production event recorded by the Opal
experiment.

�Z0

e−

e+

µ−

µ+

becomes comparable with the photon term (approx. 10%), even at leading order. This
leads to a the modified cross section,

dσEW0
dΩ

=
α2

4s
(1 + cos2 ϑ+ A cosϑ). (6.12)

This is illustrated in Fig. 6.17 comparing the QED and electroweak predictions to the
data.

As an easy integration of Eq. (6.12) shows, the total cross section is not sensitive to the
effects of electroweak interaction and we have a very good agreement with the QED value
(Fig. 6.18).

For the
√
s-range measured at PETRA, electroweak corrections are small. In the case of

LEP they are instead quite important, especally in the range around the Z0 resonance,
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Figure 6.17: Comparison of e+e− → µ+µ− differential cross section measured at PETRA
with the QED and electroweak predictions.

√
s ∼ mZ ≈ 90 [GeV].

�
�

�
��
��

�

��������

�
�

Figure 6.18: Comparison of measured total cross section at PETRA with the QED pre-
diction.

Tau pair production At high enough energy (
√
s ≥ 2mτ ≈ 3.6 [GeV]) the production

of τ+τ−-pair – which is very similar to the case of muon pair production – is possible:
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�γ

e−

e+

τ−

τ+

The final state of a tau pair production event observed in the detector can contain hadrons,
since the lifetime of τ is very short (ττ = 2.9 · 10−13 [s]) and it is the only lepton with
sufficiently high mass to produce qq̄-pairs.

Fig. 6.19 shows an event where one of the two tau survived long enough, e.g. because of
a large energy and thus a longer lifetime γττ in the laboratory frame, to hit the electro-
magnetic calorimeter, while the other one decayed in three pions which then left traces
in the electromagnetic and hadronic calorimeters.

�

�

����

Figure 6.19: Typical event display of a tau pair production event recorded by the Opal
experiment.
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6.2.6 Hadronic processes

The production of quark-antiquark qq̄ pair is another possible final state in e+e− annihi-
lation.

When a bound qq̄ state is produced, we speak of a resonance because the e+e− cross
section looks like the amplification curve of a periodic system such as a pendulum or
an RLC circuit near the resonant frequency. A famous resonance is the J/ψ resonance
corresponding to a bound state of cc̄.

Away from the resonances, there is in general no visible bound state, and the produced
quarks hadronize in jets due to the confinement of the strong interaction : quarks cannot
be seen as free particles.

����

Figure 6.20: Typical display of jet production event recorded by the Opal experiment.

Due to the strength of strong interaction at low energy, the radiative effects (this time
the radiated bosons are gluons),

�γ
g

e−

e+

q

q̄
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take a much more dramatic form than in QED : Since gluons also have a color charge,
they hadronize and for each emitted gluon one observes one more jet (Fig. 6.21).

Figure 6.21: Typical event display of a 3-jets production.

6.2.7 Limits of QED

In this section, one addresses the question : what do we expect if QED is not the only
theoretical model involved in the scattering processes discussed so far?

Suppose there is an energy scale Λ (equivalent to a length scale Λ−1) at which QED does
not describe the data anymore.

We would have changes of the various quantities, for instance, the potential, photon
propagator and total cross section would be modified as follows :

1

r
→
1

r

�
1− e−Λr

�
(potential)

−
1

q2
→ −

1

q2

�

1 +
q2

Λ2

�

(propagator)

σe+e−→µ+µ−

→
4πα2

3s

�

1±
s

Λ2 − s

�2
(cross section).
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The form of the potential is typical of a Yukawa coupling of a fermion with a massive
spin 0 field. Since this particle is imagined as heavy – the energy available is smaller or
similar to the production threshold Λ – we can treat thie particle as spinless since spin
effect are only significant in the relativistic case. This type of ansatz is thus standard in
the sense that any new heavy particle that can be produced from an e+e−-annihilation will
have the same effect on the potential, regardless of it being a scalar or a vector particle.
The other quantities are then directly related to the change in the potential.

We have seen the electroweak effects to the QED cross section at the end of the previous
subsection. This corresponds to Λ ≈ mZ0 (Fig. 6.22).�� �������� ���������� ���� ��� ���� �������� �� �����
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Figure 6.22: Comparison of measured total cross section at PETRA with the QED pre-
diction for muon and tau pair production.

Fig. 6.23 shows the ratio,

Rµµ =
σe+e−→µ+µ−

meas

σe+e−→µ+µ−

QED

,

as measured at PETRA and TRISTAN. By comparing data and theory and varying Λ
within the experimental error one can infer that – if any – new physics can only be brought
in with a mass scale Λ ≥ 200 [GeV].
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Figure 6.23: Comparison of measured total cross section at PETRA and TRISTAN with
the QED prediction for muon pair production.


