
Chapter 3

Lorentz invariant scattering cross
section and phase space

In particle physics, there are basically two observable quantities :

• Decay rates,

• Scattering cross-sections.

Decay:
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20 CHAPTER 3. LORENTZ INVARIANT SCATTERING CROSS SECTION

3.1 S-operator

In both cases |i� denotes the initial state, |f� denotes a multiparticle final state in a Fock
space and the box represents the dynamics/interactions and is called the S-operator.
The last is predicted by the theory describing the interaction.

Example In QM I/II, S ∝ H �(t) ∝ V (t) in the first order perturbation theory of the
Schrödinger equation.

S is usually a very complicated object : it contains the information about all possible
transitions |i� → |f�. Another way to state this is to remark that S contains all the
dynamics of the process.

In experiments one does not get/need/want the full S-operator. Instead, one restricts
oneself to specific |i� and |f� e.g. by choosing the beam particles (muon beam,...) for the
first and looking only at specific outcomes (3-jets events,...) for the latter.

One represents the S-operator by looking at its matrix elements,

�

f �

|f �� �f �|

� �� �
�

S |i� =
�

f �

|f �� Sf �i (3.1)

where

Sf �i = �f �| S |i� (3.2)

To isolate a specific outcome |f�, one multiplies Eq. (3.1) by �f |, and gets,

�f |
�

f �

|f �� Sf �i =
�

f �

�f |f ��
� �� �
=δff �

Sf �i = Sfi. (3.3)

Hence, the probability for the process |i� → |f� is,

P (|i� → |f�) = |Sfi|
2 (3.4)

In general we can write,

Sfi = δfi����
no int.

+ i(2π)4δ(4)(pf − pi)� �� �
4-momentum cons.

· Tfi����
scat. amplitude

, (3.5)

or using a shorthand notation

S = �+ iT ,
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in Feynman diagrams:

� �
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In the discussion of particle physics, a frequently used quantity is the transition probability
per unit time,

wfi =
|Sfi|

2

T
. (3.6)

3.2 Fermi’s golden rule

From Eqs. (3.4) and (3.5), we see that we must address the issue of defining the value of a
squared Dirac δ-function. To do this we use the rather pragmatic approach due to Fermi:

�
2πδ(p0

f − p0
i )
�2
=

�

dt ei(p
0
f−p0i )t · 2πδ(p0

f − p0
i )

= T · 2πδ(p0
f − p0

i ) (3.7)

�
(2π)3δ(3)( #»p f −

#»p i)
�2
=

���

d3x ei(
#»p f−

#»p i)·
#»x · (2π)3δ(3)( #»p f −

#»p i)

= V · (2π)3δ(3)( #»p f −
#»p i) (3.8)

⇒ wfi =
|Sfi|

2

T
= V · (2π)4δ(4)(pf − pi) · |Tfi|

2 (3.9)

To talk about the transition rate, we look at a Fock-space with a fixed number of particles.

Experimentally, the angle and energy-momentum is only accessible up to a given accuracy.
We therefore use differential cross-sections in angle dΩ and energy-momentum dp near Ω, p
respectively.

Motivating example In a cubic box of volume V = L3 with infinitely high potential
wells, the authorized momentum-values are discretely distributed.

p =
2π

L
n ⇒ dn =

L

2π
dp ⇒ d3n =

�
L

2π

�3

d3p,

and hence,

dwfi = V · (2π)4δ(4)(pf − pi) · |Tfi|
2 ·

nf�

f=1

V

(2π)3
d3pf , (3.10)
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where nf stands for the number of particles in the final state.

In order to get rid of normalization factors, we define a new matrix elementMfi by,

Tfi
!
=

�
ni�

i=1

1
√
2EiV

��
nf�

f=1

1
�
2EfV

�

Mfi. (3.11)

At first sight, the apparation of the energies of both the initial and final states might be
surprising. It is however needed in order to compensate the noninvariance of the volume,
so that EV is a Lorentz invariant quantity. From now on we will always normalize our
states to 2E (instead of 1 as is usually the case in nonrelativistic quantum mechanics).

We now substitute the definition (3.11) in Eq. (3.10) to get the fundamentally important
expression,

dwfi =
V 1−ni

(2π)3nf−4
δ(4)(pf − pi) · |Mfi|

2 ·

ni�

i=1

1

2Ei

nf�

f=1

d3pf
2Ef

. (3.12)

We can then specify this result for the two cases of interest, as we do in the following
subsections.

3.2.1 Total decay rate

In the case where ni = 1, we view wfi as a decay rate for the reaction,

a → 1 + 2 + · · ·+ nf .

We have

Γa→{nf} = w{f}a (decay width), (3.13)

τa→{nf} =
1

Γa→{nf}

(lifetime), (3.14)

where {nf} stands for the nf -particle final state 1 + 2 + · · ·+ nf .

The next step is the definition of the total decay width,

Γa =
�

{nf}

Γa→{nf} =
1

2Ea

1

(2π)3nf−4
·

�
d3p1

2E1

· · ·
d3pnf

2Enf

δ(4)(pf − pi)|Mfi|
2 , (3.15)

and the lifetime

τa =
1

Γa
(3.16)

We remark that since Ea is not a Lorentz invariant quantity, Γa also depends on the
reference frame. The quantity stated under the name “lifetime” in particle physics listings
is always the lifetime as measured in the rest frame of the particle and is hence always
the shortest one.
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Example Without relativistic time dilation, one would expect the µ-leptons generated
by cosmic rays in the high atmosphere and traveling almost at the speed of light to be able
to travel cτµ ≈ 600m before decaying, making their detection on the earth surface almost
impossible. When one takes time dilation into account, the distance becomes cτµ ≈ 10 km,
which is in accordance with the observed µ-leptons number reaching the earth. This was
actually for long the only available test of special relativity.

3.2.2 Scattering cross section

We now analyze the case of ni = 2, i.e. the case of two particles interacting via the
reaction,

a+ b → 1 + 2 + · · ·+ nf ,

thus getting the scattering cross section σ(a+ b → 1 + 2 + · · ·nf ) defined by,

σ =
# of transitions a+ b → 1 + 2 + · · ·nf per unit time

# of incoming particles per unit surface and time
=

wfi

incoming flux
. (3.17)

The denominator can also be stated as,

incoming flux = (number density) · (relative velocity) =
vab
V

.

Using Eqs. (2.12) and (3.17) we then find,

σi→{nf} =
1

4F

1

(2π)3nf−4

� �
nf�

f=1

d3pf
2Ef

�

δ(4)

�
nf�

f=1

pf − pa − pb

�

|Mfi|
2 , (3.18)

in which we see once more the Lorentz invariant Møller flux factor,

F = EaEbvab =
�
(pa · pb)2 −m2

am
2
b

=
�
(s− (ma +mb)2)(s− (ma −mb)2)

s�m2
a,m

2
b−→
s

2
. (3.19)

From the form of (3.18), we see that the total cross section is manifestly a Lorentz invariant
quantity, since it only depends on Lorentz invariants.

3.2.3 Invariant phase space for nf-particles

We have already seen that the scattering angle is related to the Mandelstam t-variable
(Section 2.2.2).
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In order to make the same statement for multiparticle final states, we define the nf -
particles phase space,

Rnf
=

�

dRnf
=

�
d3p1

2E1

· · ·
d3pnf

2Enf

δ(4)

�
nf�

f=1

pf −

ni�

i=1

pi

�

. (3.20)

We now prove that Rn is a Lorentz invariant quantity.

d3pi
2Ei

=

∞�

0

dEiδ(p
2
i −m2

i )d
3pi (3.21)

=

∞�

−∞

d4pi����
L.I.

δ(p2
i −m2

i� �� �
L.I.

) θ(Ei)� �� �
Ei>0 is L.I.

. (3.22)

3.2.4 Differential cross section

In order to get the differential cross section, we define,

tjk := (pj − pk)
2 = f(∠( #»p j,

#»p k)), (3.23)

and write

dσ

dtjk
=
1

4F

1

(2π)3nf−4

�

dRnf
|Mfi|

2δ(tjk − (pj − pk)
2). (3.24)

Starting from this expression, one can deduce differential distributions in all other kine-
matical variables (energies, angles) by expressing those through the tjk’s.

3.3 2 → 2 scattering cross section

Next we turn our attention towards the very important special case of 2→ 2 scattering,
ni = nf = 2:

a+ b → 1 + 2.

3.3.1 Phase space

First, we take a look at the phase space R2, we see that there are 6 integration variables
and 4 constraints = 2 free parameters. The goal of the next steps will be to get rid of the
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δ-functions.

R2 =

�
d3 #»p 1

2E1

d3 #»p 2

2E2

δ(4)(p1 + p2 − pa − pb)

(3.26)
=

�

d4p1δ(p
2
1 −m2

1)d
4p2δ(p

2
2 −m2

2)θ(E1)θ(E2)δ
(4)(p1 + p2 − pa − pb)

(3.27)
=

�

d4p1δ(p
2
1 −m2

1)δ((pa + pb − p1)
2 −m2

2)θ(E1)θ(Ea + Eb − E1)

=

Ea+Eb�

0

dE1

∞�

0

| #»p 1|
2d| #»p 1|dΩδ(E

2
1 −

#»p 2
1 −m2

1)δ((pa + pb − p1)
2 −m2

2)

(3.28)
=

Ea+Eb�

0

dE1dΩ

�
E2

1 −m2
1

2� �� �
�∞
0 | #»p 1|2δ(E2

1−
#»p 2
1−m2

1)d|
#»p 1|

δ
�
s− 2

�
(pa + pb) · p1 +m2

1m
2
2

��
(3.25)

where we have used,

1 =

�
dE1

2E1

δ(E2
1 −

#»p 2
1 −m2

1), (3.26)

1 =

�

d4p2δ
(4)(p1 + p2 − pa − pb), (3.27)

δ(E2
1 −

#»p 2
1 −m2

1) =
1

| #»p 1|








δ

�

| #»p 1| −
�

E2
1 −m2

1

�

+ δ

�

| #»p 1|+
�

E2
1 −m2

1

�

� �� �
=0, since | #»p 1|≥0








. (3.28)

We did not make any assumption about the reference frame up to this point. We now
specify our calculation for the center of mass frame,

#»p a +
#»p b = 0⇒ Ea + Eb =

√
s,

bringing Eq. (3.25) into,

R2 =

√
s�

0

dE∗
1dΩ

∗ |
#»p ∗

1|

2
δ(s− 2

√
sE∗

1 +m2
1 −m2

2)

=

�

dΩ∗ |
#»p ∗

1|

4
√

s

⇒ dR2 =
1

8s

�
λ(s,m2

1,m
2
2)dΩ

∗. (3.29)

For the last steps we used Eq. (2.10) and the fact that,

δ(s− 2
√

sE∗
1 +m2

1 −m2
2) =

1

2
√

s
δ

�

E∗
1 −

1

2
√

s
(s+m2

1 −m2
2)

�

.
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A last step of the calculation can be made if the integrand has no angular dependency:
since we are in the center of mass frame, we then have manifestly a 4π-symmetry and
the scattering angle can take any value, the only restriction being that the two scattered
particles are flying back-to-back in the center of mass frame. Therefore R2 is then simply
the integrand multiplied with the volume of the unit sphere, i.e.

R2 =

�

dR2 =
π

2s

�
λ(s,m2

1,m
2
2). (3.30)

This simplification always applies for a 1→ 2 decay, but usually not for a 2→ 2 scattering
reaction, where the incoming beam direction breaks the 4π-symmetry.

3.3.2 Differential cross section

Using Eq. (2.11) and (3.24) for nf = 2, we get,

dσ

dΩ∗
=

dσ

dt

dt

dΩ∗
=

| #»p ∗
1|

64π2F
√

s
|Mfi|

2, (3.31)

resulting in the differential cross section,

dσ

dΩ∗
=

1

64π2s

| #»p ∗
1|

| #»p ∗
a|
|Mfi|

2 , (3.32)

since from Eq. (2.12) F =
√

s| #»p ∗
a|.

For the special case of elastic scattering | #»p ∗
1| = | #»p ∗

a|, we get,

dσel.

dΩ∗
=

1

64π2s
|Mfi|

2 . (3.33)

Finally, we write here the invariant differential cross section for future references,

dσ

dt
=

1

16πs
�

λ(s,m2
1,m

2
2)
|Mfi|

2 s�m2
1,m

2
2−→

1

16πs2
|Mfi|

2. (3.34)

3.4 Unitarity of the S-operator

We can compute the transition probability from the matrix elements for the transition
|i� → |f�,

|Sfi|
2 = | �f | S |i� |2, (3.35)

�

f

|Sfi|
2 = 1, (3.36)
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where
�

f stands for

�

spins, particle types, quantum numbers

� �

f

�
V

(2π)3
d3pf

�

.

Developing and using the completeness relation,

�

f

|f� �f | = �,

we obtain

1 =
�

f

�i| S† |f� �f | S |i� = �i| S†S |i� ∀ |i�

⇒ S†S = � , (3.37)

in other words S is a unitary operator.

This important fact has profound implications. We state here two of them.

First, for two orthogonal states |i� and |j�, we have,

�j| S†S |i� = �j|i� = δij.

The other implication concerns the expression introduced in Eq. (3.5),

Sfi = δfi + i(2π)4δ(4)(pf − pi) · Tfi. (3.38)

For a free theory, Tfi = 0 and hence Sfi = δfi. On the other hand, for an interacting
theory ImSfi �= 0.

An obvious comparison of the real and imaginary parts of Sfi, tells us that,

Re Tfi � ImSfi (virtual contribution),

Im Tfi � ReSfi (absorbtive contribution).

Taking a closer look at the absorbtive contribution, we get,

2iIm Tfi = Tfi − T ∗
fi = i(2π)4δ(4)(pf − pi)

�

n

TfnT
∗
in,

where n denotes an intermediate state.

The special case of elastic forward scattering (|f� = |i� ,Θ∗ = 0) yields the surprising
optical theorem,

ImMii =
�

λ(s,m2
a,m

2
b)σtot , (3.39)
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relating a very specific element of Sfi with the total cross section for the transition |i� →
|f�, which is a measure for the probability for this transition to occur at all.

We can rewrite it symbolically with Feynman diagrams:
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�
�
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�
�
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�
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�
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�
�
�
�
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�
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�
�
�
�
�
�
�
�

2

The computation of the matrix elementsMfi will be treated from Chapter 5 on.


