
Chapter 2

Relativistic kinematics

Literature:

• Nachtmann [4]

• Hagedorn [5]

• Byckling/Kajantie [6]

We state some notation concerning special relativity:

xµ = (x0 = t, x1, x2, x3) = (t, #»x) contravariant four-vector (2.1)

xµ = (t,−
#»x) covariant four-vector (2.2)

gµν = gµν =







1
−1

−1
−1





 metric tensor (2.3)

τ2 = t2 − x2 = gµνx
µxν = xµxµ = x2 Lorentz invariant (2.4)

dτ = dt

�

1 −
�d #»x

dt

�2

=
dt

γ
proper time. (2.5)

Combining Eq. (2.1) and (2.5) we arrive at the four-velocity

uµ =
dxµ

dτ
=

dxµ

dt

dt

dτ
= γ(1, #»v ).

Since

⇒ u2 = γ2(1 − #»v 2) = 1 > 0,
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u is a time-like four-vector. The four-momentum is then defined as

pµ = muµ = mγ(1, #»v ) = (p0 = E, #»p ).

By calculating the corresponding Lorentz invariant,

p2 = m2u2 = m2 = E2 − #»p 2,

we find the energy-momentum relation

E =
�

m2 + #»p 2. (2.6)

A particle is said to be relativistic if #»p 2 �� m2. Conversely, for a non-relativistic particle,
#»p 2 � m2, and therefore

E =
�

m2 + #»p 2 = m

�

1 +
1

2

#»p 2

m2
+ . . .

�

= m+
1

2

#»p 2

m
+ . . .

so that we recover Newton’s expression for | #»v | � 1.

2.1 Particle decay

The decaying particle’s four-momentum is, in the rest frame, given by p = (M, 0, 0, 0),
see Fig. 2.1. The decay time (lifetime) is

dτ2 = dt2(1 − #»v 2)

where dt2 is the lifetime in the laboratory frame:

dt = γdτ > dτ. (2.7)

The result stated in equation (2.7) has been verified experimentally:

τπ+→µ+νµ = 2.6 · 10
−8 s

Eπ = 20GeV, γ =
Eπ

mπ

= 143 ⇔ v = 0.9999

⇒
t�π
tπ
= 143.

Constraints are (i) conservation of energy and momentum, p = p1 +p2 (4 equations), and
(ii) the mass-shell condition:

p2 = M2 p21 = m2
1 p22 = m2

2

p = (M,
#»
0 ) p1 = (E1,

#»p 1) p2 = (E2,
#»p 2).
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Figure 2.1: Particle decay. Dynamics will be discussed later on; at the moment we are
dealing with kinematics.

It therefore follows that

p · pi = MEi ⇒ Ei =
1

M
p · pi =

1

M
(p1 · pi + p2 · pi).

And, by using p1 · p2 =
1
2
[(p1 + p2)

2 − p21 − p22] =
1
2
[M2 −m2

1 − m2
2], we find

E1 =
1

M
(p21 + p1 · p2) =

1

2M
(M2 +m2

1 − m2
2)

E2 =
1

2M
(M2 −m2

1 + m2
2).

By using equation (2.6) and #»p 1 +
#»p 2 = 0, the absolute value of the three-momenta,

#»p 2
1 = E2

1 − m2
1 =

1

4M2

�
M4 − 2M2(m2

1 + m2
2) + (m

2
1 − m2

2)
2
�
= #»p 2

2,

is also fixed. This means that only the directions of #»p 1 and
#»p 2 remain unknown, while

the energies and the absolute values of the momenta can be calculated directly.

2.2 Two-particle scattering

For a visualisation of the process see Fig. 2.2(a). Once again, the constraints are

p2i = m2
i (i = 1, . . . , 4)

p1 + p2 = p3 + p4.

If m1 = m3 and m2 = m4, elastic scattering takes place. Consider the Lorentz invariants

p2i = m2
i and p1 · p2, p1 · p3, p1 · p4, p2 · p3, p2 · p4, p3 · p4� �� �

6 invariants, 2 linearly independent, 4 linearly dependent

.
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Figure 2.2: Two-particle scattering. The kinematical constraints are energy-momentum
conservation and the mass shell condition (a). Visualization of Mandelstam variables (b).

Four of them have to be linearly dependent, since there are only two degrees of freedom
in the system (center of mass energy and scattering angle).

We now define the Mandelstam variables (see Fig. 2.2(b))

s = (p1 + p2)
2

t = (p1 − p3)
2

u = (p1 − p4)
2,

where s denotes total center of mass energy squared (positive) and t is the four-momentum
transfer squared (negative). Note also that s + t + u =

�4
i=1 m

2
i .

The center of mass frame is defined by

#»p 1 +
#»p 2 = 0 =

#»p 3 +
#»p 4. (2.8)

The corresponding variables are asterisked: (cm., pi = p∗i ). The laboratory frame is defined
by #»p 2 = 0 (fixed target) and variables are labelled with an L : (lab., pi = pLi ). In deep
inelastic scattering the Breit system (pi = pBi ) is used, which is defined by

#»p 1 +
#»p 3 = 0.

In the following we take a closer look at the center of mass frame, see Fig. 2.3. Equation
(2.8) leads to

#»p ∗
1 = − #»p ∗

2 =
#»p

#»p ∗
3 = − #»p ∗

4 =
#»p �

p1 =
�
E∗

1 =
�

#»p 2 + m2
1,

#»p
�

p2 =
�
E∗

2 =
�

#»p 2 + m2
2,−

#»p
�

p3 = (E
∗
3,

#»p �)

p4 = (E
∗
4,−

#»p �).
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Figure 2.3: Two-particle scattering in center of mass frame. For the constraints on the
scattering angle Θ∗ see section 2.2.1.

The sum

p1 + p2 = (E
∗
1 + E∗

2� �� �
√
s

,
#»
0 )

is no Lorentz invariant, whereas

s = (p1 + p2)
2 = (E∗

1 + E∗
2)

2

is one. Now we can express E∗
i , |

#»p |, and | #»p �| in terms of s (see exercise sheet 1):

E∗
1,3 =

1

2
√

s
(s + m2

1,3 − m2
2,4) (2.9)

#»p 2 = (E∗
1)

2 − m2
1 =

1

4s
λ(s,m2

1,m
2
2), (2.10)

where we have used the Källen function (triangle function) which is defined by

λ(a, b, c) = a2 + b2 + c2 − 2ab − 2ac − 2bc

=
�
a − (

√
b +

√
c)2

��
a − (

√
b −

√
c)2

�

= a2 − 2a(b + c) + (b − c)2.

We can see that the Källen function has the following properties:

• symmetric under a ↔ b ↔ c and

• asymptotic behavior: a � b, c : λ(a, b, c, ) → a2.
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This enables us to determine some properties of scattering processes. From #»p 2, #»p �2 > 0
it follows that

smin = max
�
(m1 +m2)

2, (m3 + m4)
2
�
≥ 0

is the threshold of the process in the s-channel. In the high energy limit (s � m2
i ) Eq. (2.9)

and (2.10) simplify because of the asymptotic behavior of λ and one obtains:

E∗
1 = E∗

2 = E∗
3 = E∗

4 = | #»p | = | #»p �| =

√
s

2
.

2.2.1 Scattering angle

In the center of mass frame, the scattering angle Θ∗ is defined by

#»p · #»p � = | #»p | · | #»p �| cosΘ∗.

We also know that

p1 · p3 = E∗
1E

∗
3 − | #»p ∗

1||
#»p ∗

3| cosΘ
∗

t = (p1 − p3)
2 = m2

1 + m2
3 − 2p1p3 = (p2 − p4)

2

and can derive cosΘ∗ = function(s, t,m2
i ) :

cosΘ∗ =
s(t − u) + (m2

1 − m2
2)(m

2
3 − m2

4)�
λ(s,m2

1,m
2
2)
�

λ(s,m2
3,m

2
4)

.

This means that 2 → 2 scattering is described by two independent variables:
√

s and Θ∗ or
√

s and t.

2.2.2 Elastic scattering

We now consider the case of elastic scattering. This means that m1 = m3 and m2 = m4

(e. g. ep → ep). Therefore Eq. (2.9) and (2.10) simplify:

E∗
1 = E∗

3, E∗
2 = E∗

4

| #»p |2 = | #»p �|2 =
1

4s

�
s − (m1 +m2)

2
��

s − (m1 −m2)
2
�

and we find for the scattering angle (in the case of elastic scattering)

t = (p1 − p3)
2 = −( #»p 1 −

#»p 3)
2 = −2 #»p 2(1 − cosΘ∗)

⇒ cosΘ∗ = 1 +
t

2| #»p |2
.

Restriction to the physically valid region yields

−1 ≤ cosΘ∗ ≤ 1
#»p 2 ≥ 0

�

⇔

�
−4| #»p |2 ≤ t ≤ 0
s ≥ (m1 +m2)

2 .
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2.2.3 Angular distribution

Finally, we find for the angular distribution (bearing in mind that the distribution is
rotationally invariant with respect to the “ #»p -axis” such that

�
dφ = 2π)

dΩ∗ = 2πd cosΘ∗

dΩ∗

dt
=

4πs
�

λ(s,m2
1,m

2
2)
�

λ(s,m2
3,m

2
4)
=

π

| #»p || #»p �|
. (2.11)

2.2.4 Relative velocity

At this point, we introduce the relative velocity, which we will see to be of relevance in
defining the particle flux and hence the collider construction,

v12 = | #»v 1 −
#»v 2| =

�
�
�
�

#»p 1

E1

−
#»p 2

E2

�
�
�
� =

�
�
�
�

#»p ∗
1

E∗
1

−
#»p ∗

2

E∗
2

�
�
�
� =

| #»p ∗
1|

E∗
1E

∗
2

(E∗
1 + E∗

2)� �� �
√
s

, (2.12)

from which we get,

v12E
∗
1E

∗
2 =

√
s| #»p ∗

1| =
√

s
�

E∗2
1 − m2

1

=
√

s

�
1

4s
(s + m2

1 − m2
2) − m2

1

=
�
(p1 · p2)2 − m2

1m
2
2, (2.13)

the so called Møller flux factor. In going from the first line to the second, we used the
definition of the Källen function and in going to the third the fact that s = m2

1+m2
2+2p1·p2.

We stress here that v12E
∗
1E

∗
2 is a frame independent quantity. It appears in the definition

of the incoming particle flux, an thus in the cross section. It also plays an important role
in the normalization issues, since the classical volume element is not Lorentz invariant.

2.2.5 Center of mass and laboratory systems

For the center of mass and the laboratory systems respectively, we have,

CM : s = (E∗
1 + E∗

2)
2 = (total energy)2

L : s = m2
1 + m2

2 + 2m2E
L
1

EL
1 �m1,m2
−→ 2m2E

L
1 .

As an example for the difference, we look at the two operating modes of the Tevatron at
Fermilab (Figure 2.4). The energy of the beam particles is Ebeam = 980GeV.
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Figure 2.4: Sketch of the Tevatron accelerator at Fermilab.
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Figure 2.5: s-channel.

Used in the pp̄-mode, the collision is head on and we are allowed to consider ourselves in
the center of mass frame and,

√
spp̄(Collider) = 1960GeV,

which is ideal for discovering new phenomena with the highest possible energy.

If on the other hand, the pN-mode is chosen (N is a nucleus in the target), we speek of
the laboratory frame where

√
spN(Fixed target) = 42.7GeV < mW.

Although this mode is less energetic, it is then possible to create a secondary beam. With
this method, the existence of ντ could be proven.

2.3 Crossing symmetry

The 2 → 2 scattering process has some underlying symmetries, which we shall explore
now.

Example When we exchange p3 and p4, s is not affected but t and u interchange their
roles.

We take now a look at the reaction (Figure 2.5), 1+2 → 3+4, for which the 4-momentum
is conserved :

p1 + p2 = p3 + p4.
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Figure 2.6: t-channel.

It is called “s-channel” reaction, because the only positive Mandelstam variable is s. Ts

describes the scattering dynamics of the process and will be treated later. It depends
on the three Mandelstam variables and is predicted by theoretically (QED, QCD, EW,
SUSY,...),

Ts(s, t, u) = T(s, t, u)|s>0,t≤0,u≤0. (2.14)

T can then be extended analytically to the whole range s, t, u ∈ R. Depending on the
region, it can then describe different crossed reactions.

For instance, suppose we exchange p2 and p3, we then get naively (Figure 2.6),

p1 + (−p3) = (−p2) + p4.

We now make the interpretation
−pn = pn̄,

in which n̄ stands for the antiparticle of the particle n, leading to the expression (Fig-
ure 2.6),

p1 + p3̄ = p2̄ + p4.

Since 1 and 3̄ are the incoming particles, we speak of the “t-channel” process. One has

Tt(s, t, u) = T(s, t, u)|s≤0,t>0,u≤0. (2.15)

2.3.1 Interpretation of antiparticle-states

As stated above, we interpret particles with 4-momentum −p to be antiparticles with
4-momentum p. The reason for that becomes clear when we look at the 4-current,

jµ
ED
=

�
ρ
#»
j

�
QM
= −e����

electron charge

i(ϕ∗∂µϕ − ϕ∂µϕ∗).
� �� �

probability density
� �� �

charge density

(2.16)
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Figure 2.7: Emission of a positron and absorption of an electron. The emission of a positron
with energy +E is equivalent to the absorption of an electron with energy −E.

Inserting the wave function of the free electron,

ϕ = Ne−ip·x, (2.17)

in the definition of the 4-current Eq. (2.16), one gets

e− with 4-momentum + pµ : jµ(e−) = −2e|N|2pµ = −2e|N|2
�
+E
+ #»p

�

,

e+ with 4-momentum + pµ : jµ(e+) = +2e|N|2pµ = −2e|N|2(−p)µ,

e− with 4-momentum − pµ : jµ(e−) = −2e|N|2(−p)µ = −2e|N|2
�
−E
− #»p

�

,

and hence the rule,

jµ(e+) = jµ(e−) with the subsititution pµ → −pµ . (2.18)

We stress here the fact that the whole 4-vector pµ takes a minus sign, and not only the
spatial part #»p .

What we effectively used here is the fact that in the phase of Eq. (2.17) we can flip the
signs of both pµ and xµ without changing the wave function. There is no place here for
particle travelling backwards in time!

A particle with 4-momentum −pµ is a representation for the corresponding antiparticle
with 4-momentum pµ. Alternatively, one can say that the emission of a positron with
energy +E corresponds to the absorption of an electron with energy −E. Figure 2.7
restates the last sentence as a Feynman diagram.

The three reactions (s-, t- and u-channels) are described by a single function T (s, t, u)
evaluated in the relevant kinematical region (s ≥ 0 or t ≥ 0 or u ≥ 0).

In order to represent the situation, one usually refers to the Dalitz plot 1 (Figure 2.8).

1or equilateral coordinates
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t = tmin

s = sminu = umin
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.

Figure 2.8: Dalitz plot of s-, t-, and u-channels.
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Figure 2.9: Møller scattering (a) and Bhabha scattering (b).

Example We take a look at the Møller scattering,

e−e− → e−e−,

which is the s-channel of the reaction depicted on Figure 2.9(a). By crossing, we get as
u-channel reaction the Bhabha scattering,

e+e− → e+e−,

which is the reaction depicted on Figure 2.9(b).

The considerations of this chapter enable us to derive constraints on the possible dynamics
but are not sufficient to decide on the dynamics. To “get” the dynamics we must calculate
and compare to experiments decay rates and scattering cross-sections.
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