
Chapter 4

Accelerators and collider
experiments

This chapter gives an introduction to particle accelerators and detectors as well as to
data analysis tools relevant in this context. This involves the definition and application
of concepts based on the kinematics developed in Chap. 2. Basic principles of particle
accelerators are discussed as well as fixed target and beam collider experiments. The
concepts of center of mass energy, luminosity, cross section, and event rates are introduced,
followed by the basic building blocks of particle physics experiments. In order to be able
to analyze the data gathered with collider experiments, we will introduce the concepts
of rapidity, transverse and missing momentum (applications of momentum conservation)
and invariant mass.

Modern techniques in experimental particle physics can be classified according to their
use of accelerators. Non-accelerator-based experiments (e. g. the setup in Fig. 4.1) include
measurements based on cosmic rays, solar and atmospheric neutrinos, and searches for
dark matter. The latter, together with dark energy, could account for 95% of the universe.
In the case of cosmic rays we can study high energy particles without having to accelerate
them. Advances in neutrino physics have been achieved using large targets of (heavy)
water surrounded by photomultipliers (e. g. Super-Kamiokande: neutrino oscillations).
Accelerator-based experiments, on the other hand, include fixed target experiments and
particle colliders, which are the topic of this chapter. As an example for particle colliders,
the Large Hadron Collider (LHC) is shown in Fig. 4.2 with its four collision sites.

4.1 Particle accelerators: motivations

Particle accelerators are a fundamental tool for research in physics. Their importance
and fields of use can be understood when one considers their main parameter, the beam
energy. If we intend to use accelerators as large “microscopes”, the spatial resolution
increases with beam energy. According to the de Broglie equation, the relation between
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Figure 4.1: Example of a non-accelerator-based experiment. Heavy water targets can be
protected from radiation background by installing them in deep-underground facilities.
The target is surrounded by photomultipliers.

Figure 4.2: The Large Hadron Collider at CERN with its four experiments CMS, ATLAS,
LHCb, and ALICE.
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momentum | #»p | and wavelength λ of a wave packet is given by

λ =
h

| #»p |
. (4.1)

Therefore, larger momenta correspond to shorter wavelengths and access to smaller struc-
tures. In addition, it is possible to use accelerators to produce new particles. As we have
seen in Chap. 2, this requires the more energy the heavier the particles are. Because beams
are circulated for several hours accelerators are based on beams of stable particles and
antiparticles, such as e+, e− or p, p̄ or e, p (Deutsches Elektronen-Synchrotron, DESY).
There are two possibilities as to what to collide a beam of accelerated particles with:

1. collision with another beam;

2. collision with a fixed target.

In both cases one can study the resulting interactions with particle detectors. By using
a fixed target, one can furthermore produce a beam of secondary particles that may be
stable, unstable, charged or neutral, solving the impossibility of accelerating unstable or
neutral particles directly.

In the search for new sub-structures, Eq. (4.1) is the fundamental relation. It tells us that
the resolution increases as we go to higher energies. For instance the resolution of 1GeV/c
and 103 GeV/c are:

| #»p | = 1
GeV

c
→ λ = 1.24 · 10−15 m � size of a proton

| #»p | = 103
GeV

c
→ λ = 1.24 · 10−18 m � size of proton substructures, e. g. quarks.

Consider now the second scenario mentioned above, namely the search for new particles
with high mass. For a collision of a particle with mass m1 and momentum #»p 1 with another
particle m2,

#»p 2 the energy in the laboratory frame is given by1

EL =
�

#»p 2
1c

2 + m2
1c

4 +
�

#»p 2
2c

2 + m2
2c

4

| #»pL| = | #»p 1 +
#»p 2|

E2
L − #»p 2

Lc
2 = E∗2 − #»p ∗2

����
=0

c2

⇒ E∗ =
�
E2

L − #»p 2
Lc

2.

The production energy threshold for particles produced at rest is therefore:

E∗ =
�

i

mic
2, while Ekin = 0

1Recall that we asterisk quantities given in the center of mass frame. See Sect. 2.2 for labeling con-
ventions.
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where mi is the mass of the i-th particle of the final state. We can conclude that, since
the center of mass energy E∗ grows with the energy in the laboratory frame EL, we can
produce higher masses if we have higher energies at our disposal. This allows to produce
particles not contained in ordinary matter.

Example: As an example, consider inelastic proton collisions. Imagine we want to pro-
duce three protons and one antiproton by colliding a proton beam against a proton target
(e. g. a hydrogen target). The corresponding reaction is

pp → p̄ppp

where conservation of the baryon number requires the presence of one antiproton in the
final state. What is the minimum momentum of the proton beam for the reaction to take
place? Since particles and antiparticles have the same mass and the target is at rest in
the laboratory frame, we find

m1 = m2 = m = 0.9383
GeV

c2

| #»pL| = | #»p 1|, |
#»p 2| = 0

at threshold: E∗ = 4mc2 = 3.7532GeV

⇒ | #»p 1| = 6.5
GeV

c
.

4.1.1 Center of mass energy

As we have seen, the center of mass energy E∗ is the energy available in collision ex-
periments. We therefore want to compare fixed target and colliding beam experiments
concerning their available energy. In the case of beam-target collision, E∗ is determined
by (with m the mass of both the beam and target particles)

EL =
�

#»p 2
Lc

2 + m2c4 + mc2

E∗2 = M2c4 = E2
L − #»p 2

Lc
2 = 2m2c4 + 2mc2

�
#»p 2

Lc
2 + m2c4.

Setting | #»pL| = pinc and neglecting the mass of the target we get:

E∗ =
�

2mc2pincc = 1.37
√
GeV

√
pincc = 1.37

√
GeV

�
Einc.

This means that, in the case of a fixed target experiment, the center of mass energy grows
only with square root of Einc (see Fig. 4.3).

However, in beam-beam collisions, we find E∗ = ECM = 2Einc. Therefore, it is much more
efficient to use two beams in opposite directions, as the following examples demonstrate
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Figure 4.3: Center of mass energy of the colliding beam for a fixed target experiment. The
energy increases with the square root of the beam energy.

(target is for instance hydrogen):

−−−−→
22GeV +

←−−−−
22GeV has the same ECM as

−−−→
1TeV +mtarget;

−−−→
1TeV +

←−−−
1TeV has the same ECM as

−−−−−→
103 TeV +mtarget.

The concept of colliding beams naturally leads to large circular accelerators. But for them
to work properly some technical problems have to be solved. For instance, the particle
density in a beam is much lower than in a solid or liquid target (see also the concept
of luminosity in Sect. 4.3.2). Therefore, one tries to cross the beams many times and
maximize the beam intensities (number of particle bunches per beam). As mentioned
before, this approach only works with stable particles or antiparticles. Furthermore, in
order to avoid beam-gas interactions (unintended fixed target collisions), a high vacuum
is needed in the beam-pipe (about 10−9 Pa). Two beam lines are needed in the particle-
particle case, whereas in the particle-antiparticle case one beam line is sufficient, with the
two beams circulating in opposite directions. Finally, electronics represent another crucial
part of the setup. At a rate of about 40 · 106 collisions per second a fast electronic system
is necessary to decide what collisions to select.

4.2 Acceleration methods

Bearing in mind that an electric field
#»

E produces an accelerating force
#»

F on a charge q,

#»

F = q
#»

E,
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Figure 4.4: Sketch of a circular (left) and linear (right) accelerator. A circular machine
needs to have one acceleration cavity, while a linear machine needs several cavities in
series in order to reach high energies.

one could use an electrostatic field to accelerate charged particles. Since the maximal
available potential difference (cf. Van de Graaff accelerator) is about 10MV, one can
accelerate particles up to 10MeV. However, the fact that the electrostatic field is con-
servative (

� #»

E · d
#»

l = 0) implies that the energy transfer only depends on the potential
difference and not on the path. Therefore, circulating the beam in an electrostatic field
does not lead to an increasing acceleration. The problem is solved by using several times
a small but variable potential difference. This can be done using circular or linear ma-
chines. In a circular accelerator, one can use several times the same acceleration cavity
(see Fig. 4.4, left), whereas in a linear accelerator several cavities in series are needed to
reach high energies (see Fig. 4.4, right). In the case of a circular accelerator, the particles
will receive a certain amount of energy at every turn, provided they are in phase with the
accelerating potential. Because of the inertia principle, one further needs a magnetic field
providing the centripetal force to keep particles on a circular path. An outline of historical
developments in particle accelerators is given in Tab. 4.1. In the following sections, we will
take a more detailed look at two types of accelerators: cyclotrons and synchrotrons.

4.2.1 Cyclotron

The sketch of a cyclotron is shown in Fig. 4.5. Particles are injected in the center and
accelerated with a variable potential while a magnetic field

#»

B keeps them on spiral tra-
jectories. Finally, particles are extracted and used in experiments. Cyclotrons are rather
compact, as one can also see in Fig. 4.6. The maximal energy is of order 20MeV for cy-
clotrons and up to 600MeV for synchro-cyclotrons. For a particle moving in the cyclotron
the centripetal and Lorentz forces are balanced:

m
v2

ρ
= qvB (4.2)
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Figure 4.5: Sketch of a cyclotron accelerator. Source: [8, p. 108].

Figure 4.6: A first prototype of a cyclotron (by Lawrence) and the 590MeV isochronous
cyclotron at PSI.
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Year Accelerator Beam energy
1921 “Kaskadengenerator” (Greinacher)
1924–1928 Concept and first prototype of linear accelerator

(Ising / Wideröe)
1932 First nuclear reaction induced by cascade particle 400 keV protons

accelerator, p7Li → 2α (Cockroft / Walton)
1930 First Van de Graaff accelerator 1.5MV
1930–1932 First cyclotron (concept: Lawrence) 1.5MeV

Upgraded cyclotrons (Synchrocyclotron) 300 − 700MeV
1953 First synchrotron at Brookhaven lab—Cosmotron 3GeV

(concept: Oliphant / Veksler / McMillan)
1958 Proton Syncrotron (CERN) 28GeV
1983 Tevatron (Fermilab) 1000GeV
1990 HERA (DESY): first and only electron-proton collider
2008 Large Hadron Collider (CERN) up to 7000GeV

Table 4.1: Evolution timeline in particle accelerators (q. v. [7, pp. 9]).

where v is the velocity of the particle, m the mass, q the charge, and ρ the trajectory
radius. This yields for the cyclotron frequency ω

v = ωρ (4.3)

⇒ ω =
qB

m
. (4.4)

The alternating high voltage used to accelerate the particles (see Fig. 4.5) matches the
cyclotron frequency, such that the particles are accelerated when passing the capacitor
between the two half disks, also called as “D’s”. We can also conclude that the radius
of the particle trajectory grows linearly with its momentum. For relativistic particles,
Eq. (4.4) has to be modified:

ω� =
qB

γm

where γ = 1/
�

1 − v2/c2. This modification has, for example, the following effect on the
revolution frequency:

v

c
= 50% ⇒ γ = 1.155 ⇒ ω� = 0.86ω

v

c
= 99% ⇒ γ = 7.1 ⇒ ω� = 0.14ω.

Isochronous cyclotrons compensate for the variation in frequency by increasing the mag-
netic field (rather than changing the frequency) with the radius.
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Figure 4.7: Sketch of a synchrotron accelerator. High frequency cavities are used to accel-
erate the particles. Dipole magnets keep them on circular trajectories. Linear accelerators
are used for pre-acceleration and injection. Source: [8, p. 110].

Figure 4.8: Magnets used in synchrotrons. Dipole magnets (left) keep the beam on a
circular path, while quadrupole magnets (right) focus particles in the vertical or horizontal
plane. Source: [8, p. 111].

4.2.2 Synchrotron

In the case of the synchrotron, the trajectory radius is kept constant. This is achieved
by dipole magnets (see Fig. 4.8), while high frequency cavities are used to accelerate
the particles (see Fig. 4.7). The problem of reducing the cross section to increase the
particle density is solved by using quadrupole magnets (see Fig. 4.8). Their focussing and
defocussing properties can be combined in a way as to lead to an overall focussing of the
beam. Starting from Eq. (4.2), we have for the radius ρ

ρ =
p

qB
.
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This yields, setting q = ze (with e the unit charge),

cp[eV] = czBρ = 3 · 108
m

s
zB[T]ρ[m] (4.5)

⇒ p

�
GeV

c

�

= 0.3zB[T]ρ[m] (4.6)

for the momentum.

Example: As an example, we consider the LHC at CERN: With a circumference of
27 km, yielding a radius of 4.3 km, an average magnetic field of 5.4T is needed to keep
protons with momentum 7TeV/c on circular trajectories. Magnetic fields of this magni-
tude require very large currents and therefore superconductors which only work at low
temperatures (about 2◦ K). The superconducting cables are therefore cooled with liquid
helium.

Particle beams are injected into the vacuum pipe at relatively low energy with the mag-
netic field at its minimal value. Because the particles traverse acceleration cavities at
every turn, the momentum grows accordingly. Since the beam has to be kept on the same
radius, the magnetic filed also has to grow. On the other hand, rising velocity means
changing revolution frequency and the frequency of the potential differences must be kept
in phase with the particles. When maximum momentum is reached the accelerating cavi-
ties are switched off and the beam can be extracted to be used in experimental areas (see
Fig. 4.9) or to be injected in larger synchrotrons (see Fig. 4.10). If the beam remains in
the synchrotron ring it can be steered to cross other beams in collision points.

Another possible application of synchrotrons is to use the synchrotron radiation emit-
ted by circulating beams. For this purpose one uses electrons, since they produce more
synchrotron radiation than hadrons because of their smaller mass. The highly energetic
photons emitted are used for measurements in solid state physics and protein research.
An example is the Swiss Light Source at the Paul Scherrer Institute (Villigen, Switzer-
land), where electrons are pre-accelerated by a 100MeV linear accelerator, injected into a
synchrotron of 288m circumference, kept on track by 36 dipole magnets with 1.4T field,
focussed by 177 quadrupole magnets, for a total beam energy of 2.8GeV.

4.3 Particle physics experiments

In the following sections we introduce or recapitulate some basic concepts in particle
physics experiments.
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Figure 4.9: Schematic view of a synchrotron. Beams can be extracted and used in several
experimental areas.

Figure 4.10: Accelerator system at CERN. Beams accelerated in linear machines and small
synchrotrons are injected into larger synchrotron rings. Source: [8, p. 113].
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4.3.1 Cross section

For a detailed introduction to the concept of cross section see Sect. 3.2.2. We recall that
cross sections have dimension of area (cm2). The common unit is barn, defined as

1 b = 10−24 cm2.

Until now, we have used the total cross section σ. This is a sum of contributions by many
final states:

σtot =
�

i

σi.

Example: Results of total cross section measurements for pp and pp̄ collisions are shown
in Fig. 4.11.

4.3.2 Luminosity

While cross sections characterize the scattering process, the luminosity characterizes an
accelerators performance. With cross section σ and number of events per second R, the
luminosity L is given by

R = Lσ. (4.7)

Because the dimension of the cross section is a surface, the units of luminosity are cm−2s−1.

The meaning of luminosity can be illustrated considering e. g. an e+e− accelerator with
N particles per beam, revolving f times per second. We assume a Gaussian shaped beam
with dimensions sx and sz, which yields a transverse size of 4πsxsz. In one turn, one
electron crosses N/(4πsxsz) positrons. Because there are N particles revolving in each
beam f times per second the number of collisions per second is

L =
fN2

4πsxsz
. (4.8)

From Eq. 4.7, the number of events per second is

R =
σfN2

4πsxsz
. (4.9)

From Eq. (4.8) we notice that the luminosity can be increased by reducing the cross
section of the beam, by increasing the number of particles in the beam or by increasing
the revolution frequency.

In general, the luminosity of an accelerator gradually increases over time, while acceler-
ator physicists learn how to operate the machine and to squeeze the beam size at the
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Figure 4.11: Total and elastic cross sections for pp and pp̄ collisions as a function of
laboratory beam momentum and total center of mass energy. Source: [9].
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Figure 4.12: Instantaneous luminosity at Tevatron as a function of time (2001 – 2009).
Note that the target luminosity for LHC is 1034 cm−2s−1.

intersection point. For example, the evolution of instantaneous luminosity over time at
Tevatron is shown in Fig. 4.12.

The integral of the delivered luminosity over time is called integrated luminosity and is a
measure of the collected data size. The integrated luminosity delivered by Tevatron until
early 2009 is shown in Fig. 4.13.

Example: Consider an accelerator ring with the following properties:

• Ring length = 100m;

• Revolution frequency = 3 · 106 Hz = 3MHz;

• N = 1010 particles;

• sx = 0.1 cm, sz = 0.01 cm.

Using Eq. (4.9), we can calculate L = 1029 cm−2s−1. If we are interested in a rare process,
for example e+e− → pp̄ (the cross section is σ = 1 nb = 10−33 cm2) and have ECM ∼
2 − 3GeV we only expect R = 10−4 events per second or about 0.35 events per hour.
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Figure 4.13: Integrated luminosity at Tevatron as function of time.

4.3.3 Particle detectors

To gather data from experiments carried out at accelerators, we need particle detectors.
They are disposed around the interaction region and detect (directly or indirectly) the
reaction products. Typically, the following measurements are performed on final state
particles:

• Spatial coordinates and timing of final state;

• Momentum;

• Energy;

• Type of particle (particle ID).

Because of kinematical constraints, for fixed target experiments the production of final
states is mainly in the forward direction. Therefore, the detector has to cover only a small
solid angle (see Fig. 4.14). In colliding beam experiments, on the other hand, cylindrically
symmetric detectors with ermeticity down to small angles are preferred (see Fig. 4.15).
A collider physics experiment has in general tracking detectors in a solenoidal field sur-
rounded by calorimeters and particle ID detectors (e. g. muon ID). To allow the momen-
tum measurements, a solenoidal magnetic field is applied parallel to the colliding beams.
The particles trajectories in the magnetic field are measured in the inner layers by silicon
pixel and silicon strip tracking devices. They are surrounded by calorimeters measuring
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Figure 4.14: Schematic view of an experimental setup for a fixed target experiment.

Figure 4.15: Schematic view of a detector for colliding beam experiments.

the particles’ energy. The general structure of such a detector, shown in Fig. 4.15, is also
visible in the Compact Muon Solenoid (CMS) experiment at LHC. A sketch of the CMS
experiment is given in Fig. 4.16.

In high energy experiments the momentum measurement is based on the deflection of
charged particles in a magnetic field. Consider a simple case involving a dipole magnet
(Fig. 4.17(a)). One can measure the track direction before and after the bending influence
of the magnetic field to obtain the angle θ. The momentum is derived from Eq. (4.6):

p = 0.3BR

length = l = 2R sin

�
θ

2

�

∼ Rθ

⇒ θ =
length

R
=

0.3Bl

p

⇒ p =
0.3Bl

θ
.

In collider experiments the B field is parallel to the beams, which means that curvature
only happens in the transverse plane (Fig. 4.17(b)). The momentum resolution is given
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Figure 4.16: The CMS experiment at the LHC.

(a) (b)

Figure 4.17: Momentum measurement in collider experiments using a magnetic field. The
magnetic field is parallel to the beams (orthogonal to the page).
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(a) (b)

Figure 4.18: Axes labelling conventions (a) and definition of transverse momentum (b).
Source: [10].

by

σ(pT)

pT
=

σrφpT
0.3Bl2R

�
720

n + 4

�−1
2

where σrφ is the error on each measurement point, lR the radial length of the track, and
n the number of equidistant points.

4.4 Kinematics and data analysis methods

In this section we describe the data analysis tools used in collider particle physics experi-
ments discussed in Sect. 4.3. We introduce variables in the laboratory frame and methods
based on momentum conservation and invariant mass. Momentum conservation leads to
the concepts of transverse momentum and missing mass. As examples, we discuss two-
and three-jet events as well as the W boson discovery.

4.4.1 Pseudorapidity and transverse momentum

Consider the collision of two beams in the laboratory frame. The axes labelling conventions
are given in Fig. 4.18(a) (pp̄ scattering). The momentum of each particle produced in a
collision can be decomposed in a component parallel to the beams (longitudinal, along the
z direction) and one perpendicular to the beams (transverse, in the xy plane) as shown
in Fig. 4.18(b). The transverse component of the momentum is given by (Θ∗ ≡ θCM)

pT = p sin(θCM)

and spans an angle φ with the x axis. To measure the longitudinal angle of the emerging
particle jet one usually uses a variable called pseudorapidity η. It is defined by

η = − ln

�

tan

�
θCM

2

��
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(a) (b)

Figure 4.19: Definition of the longitudinal scattering angle θCM (a) and definition of par-
ticle distance in the η-φ plane (b). Source: [10].
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Figure 4.20: Pseudorapidity as a function of θCM (a) and pseudorapidity for various values
of θCM (b). Source (b): [11].

and is Lorentz invariant under longitudinal boosts (see Fig. 4.19(a)). Momenta in the
transverse plane are also invariant under longitudinal relativistic transformations. There-
fore, the distance between single particles or jets of particles is usually measured in the
ηφ plane, as shown in Fig. 4.19(b).

Particles produced at θCM = 90◦ have zero pseudorapidity. As visualized by Fig. 4.20(a)
and 4.20(b), high |η| values are equivalent to very shallow scattering angles. Typical
coverage of central detectors extends to |η| ∼ 3. Coverage of high rapidities (θCM < 5◦)
can be achieved with detectors placed at large z positions.

4.4.2 Momentum conservation in particle jets

Experiments in hadron colliders usually deal with particles at high transverse momentum.
This is because the incoming particles collide head-on and have no transverse momentum
before scattering and therefore, the final state particles must have zero total transverse
momentum. Processes involving large momentum transfer produce particles in the center
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Figure 4.21: Two jet event production at hadron colliders. Source: [12].

of the detector (small pseudorapidity). An example of such a process is given in Fig. 4.21.
The experimental signature of a two jet event is shown in Fig. 4.22. The calorimeter
measures the deposited energy in cells of the η-φ plane. Both charged and neutral particles
are detected. The histogram shows the energy measured in each cell. Note that the main
signals are symmetric in azimuth and at about zero pseudorapidity. The momentum of
each charged particle in a jet is measured by the central tracking chamber. Low momentum
components yield smaller bending radii and the total transverse momentum has to be zero.

Electron-positron pairs can annihilate producing quark pairs (see Fig. 4.23(a)). This was
studied for example at the Large Electron-Positron Collider (LEP). In some cases, a gluon
can be radiated from one of the outgoing quarks (see Fig. 4.23(b)). In the latter case one
observes three particle jets in the final state: two quark jets and one gluon jet. If no particle
escapes the detector the three jets must have total transverse energy equal to zero. In the
next section we discuss the case of particles escaping the experiment undetected. This
topic is discussed more thoroughly in Chap. 8.

4.4.3 Missing mass method

A collision is characterized by an initial total energy and momentum (Ein,
#»p in). In the

final state we have n particles with total energy and momentum given by:

E =

n�

i

Ei, (4.10)

#»p =

n�

i

#»p i. (4.11)

Sometimes an experiment may measure E < Ein and #»p �= #»p in. In this case one or more
particles have not been detected. Typically this happens with neutral particles, most often
neutrinos, but also with neutrons, π0, or K0

L. The latter have a long lifetime and may decay
outside the sensitive volume. To quantify this process, we introduce the concept of missing
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Figure 4.22: Two jet event, reconstructed in the tracking chamber (b) and calorimeter
signals (a) of the DØ experiment.

Figure 4.23: Two- and three-jet events in e+e− collisions. The rightmost sketch shows the
tracks reconstructed in the central tracking detector.
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Figure 4.24: Production and decay of a W+ boson in a pp̄ collision.

Figure 4.25: Event with a W boson decay candidate via W+ → e+ + νe. The event was
recorded by the UA1 experiment (CERN). Source: [13, p. 112].

mass:

missing mass × c2 =
�

(Ein − E)2 − ( #»p in −
#»p )2c2. (4.12)

The missing mass is measured for every collision and its spectrum is plotted. If the spec-
trum has a well-defined peak one particle has escaped our detector.

Example: Consider the decay of W bosons. They can be produced in proton-anti-
proton collisions mainly via the process shown in Fig. 4.24; a u-quark collides with an
anti-d-quark producing a W+ boson. The W+ then decays into a neutrino-lepton pair.
The muon is detected and its momentum can be measured. The neutrino escapes the
detector undetected. The total sum of the transverse momenta is therefore not zero! In
other words, the experimental signature of the neutrino in the experiment is the missing
transverse momentum. One of the first events [13, p. 112] attributed to production and
decay of a W+ boson is shown in Fig. 4.25. The arrow shows the lepton (e+) and the
missing momentum is compatible with the e+ transverse momentum.
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4.4.4 Invariant mass method

The invariant mass is a characteristic of the total energy and momentum of an object or a
system of objects that is the same in all frames of reference. When the system as a whole
is at rest, the invariant mass is equal to the total energy of the system divided by c2. If
the system is one particle, the invariant mass may also be called the rest mass:

m2c4 = E2 − #»p 2c2.

For a system of N particles we have

W2c4 =

� N�

i

Ei

�2

−

� N�

i

#»p ic

�2

(4.13)

where W is the invariant mass of the decaying particle. For a particle of Mass M decaying
into two particles, M → 1 + 2, Eq. 4.13 becomes:

M2c4 = (E1 + E2)
2 − ( #»p 1 +

#»p 2)
2c2 = m2

1c
4 + m2

2c
4 + 2(E1E2 −

#»p 1 ·
#»p 2c

2) = (p1 + p2)
2.

Example: Particles like ρ, ω, φ have average lifetime of 10−22−10−23 s. How do we know
of their existence if they live so shortly? Consider, for example, the reaction pp → ppπ+π−.
We identify all four particles in the final state and measure their momentum. Let’s focus
on the pion pair, the total energy and momentum of the pair are:

E = E+ + E−

#»p = #»p+ + #»p−.

The corresponding invariant mass is

Mc2 =
�
E2 − #»p 2c2.

The event distribution for the variable M will look like the plot in Fig. 4.26. The peak in
the event rate at mρ is evidence for ρ production.

Example: Another example illustrating this point is the Z discovery in 1984. Fig. 4.27
shows an event where the Z boson, after production by proton-proton collision decays
into an e+e− pair (white dashed lines). The invariant mass of the pair is about 92GeV.

Example: Consider now the π0 reconstruction. Neutral pions decay in photon pairs in
about 99% of the cases. By measuring the angle and energy of the emitted photons (see
Fig. 4.28) one can reconstruct the mass of the decaying pion (see Fig. 4.29).
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Figure 4.26: Event distribution for invariant mass of the pion pair in the process pp →
ppπ+π−. The sparse pions’ (left) distribution is broad and can be predicted using simula-
tion techniques. The invariant mass of the pion pairs stemming from ρ0 decay (center) is
peaked around mρ. All pions contribute to the recorded events (right).

Figure 4.27: Z0 boson discovery at the UA2 experiment (CERN). The Z0 boson decays
into a e+e− pair, shown as white dashed lines.
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Figure 4.28: π0 decay in two photons. Σ denotes the laboratory frame (left) and Σ∗ denotes
the pion rest frame (right). Source [8, p. 95].

Figure 4.29: Invariant mass spectrum for photon pairs. The π0 appears as a peak at the
pion mass.
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Figure 4.30: Dalitz plot for K−p → π+π−Λ (Λ → π−p). Source: [8, p. 200].

Example: In case of three body decays, R → 1 + 2 + 3, one can define three invariant
masses:

m2
12c

4 ≡ (p1 + p2)
2

m2
13c

4 ≡ (p1 + p3)
2

m2
23c

4 ≡ (p2 + p3)
2.

This yields

m2
12 + m2

13 + m2
23 = m2

1 + m2
2 + m2

3 + (p1 + p2 + p3)
2 1

c4

= m2
1 + m2

2 + m2
3 +M2.

This means that there are only two independent invariant masses.

As an example, let’s study the reaction:

K−p → Λπ+π− (Λ → π−p).

We can measure two invariant masses:

m12 ≡ m(Λπ−) and m13 ≡ m(Λπ+).

The so-called “Dalitz plot” given in Fig. 4.30 shows the relation between m2
13 and m2

12.
The Σ± resonances appear as two bands in the Dalitz plot around 1.4GeV.


