Particle Physics Phenomenology I

HS 10, Series 10
Due date: 10.12.2010, 1 pm

Exercise 1 The generators T%(R) of any representation R obey the commutation rules
[T°(R),T*(R)] = if ™ T°(R). (1)

Show that the generators T of the adjoint representation, given by (T'%)p. = —ifape, satisfy
this commutation relations.
Hint: Use the Jacobi Identity ( [[T¢,T%],T¢] + [T? T¢],T°] + [[T¢, T, T% =0 ).

Exercise 2 Consider soft radiative QCD corrections to a quark scattering off an electromag-

netic current.
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a) Show that (in the soft limit) the Matrix element becomes
Mi’;w = (—ieugy"u1) Ji" (1 + O(k))

where
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Hence prove that J%“ka = 0 to show that that the current J is conserved.

b) Compute the square of the matrixelement, i.e.
M2 =" ea(A) (") g (N ML (M),
A

and show that the Matrix element square factorises into a soft (eikonal) part times the

squared amplitude of the underlying leading order process (|M}"|?) as follows
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Exercise 3 Using the fact that a QCD amplitude can be written as the product of a
purely kinematical (Lorentz invariant) part times a colour part, calculate the colour factors

that appear in the following squared matrix elements at leading order: |M(qq — qq')|?,
IM(ag — ¢'d) P, [M(ag — ag)I?, [M(ag — gg)P.



