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How to test QED theory
Precision tests of the Quantum Electrodynamics theory usually consist in 
the measurement of the electromagnetic fine structure constant a in 
different systems. Experimental results are compared with theoretical 
predictions
The validation process requires very high precision in both measurements 
and theoretical calculations
QED is then confirmed to the extent that these measurements of a from 
different physical sources agree with each other
The most stringent test of QED is given by the measurement of the 
electron magnetic moment. However, several other experimental tests 
have been performed in different energy ranges ranges and systems:

Low energy range, accessible with small experiments
High energy range, accessible with particle colliders (e.g. e+e- colliders)
Condensed matter systems

As we will see, the achieved precision makes QED one of the most 
accurate physical theories constructed so far
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Part one:
Tests of QED at high energy
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Tests of QED at high energy
In addition to the low-energy experiments, QED has been tested also in 
high energy electron-positron collisions 
We discuss here the following reactions:

e+e- → e+e- (Bhabha scattering)
e+e- → m+m-, t+t- (Lepton pair production)
e+e- → g g (Two photon annihilation)
e+e- → q q → hadrons (Total hadronic cross section)

The energy range (√s) between 12 GeV and 47 GeV was investigated with 
the PETRA accelerator at DESY (Hamburg)
High energy ranges (90-200 GeV) were covered by the LEP collider at 
CERN (Geneva). However, electro-weak contributions to the cross-sections 
become considerable at these energies
Intermediate energies were covered by TRISTAN and SLC
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e+e- colliders
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e+e– Scattering Experiments

Accelerator Experiments CMS-Energy Lumi

SPEAR SPEAR 2 – 8 GeV —

PEP
ASP, DELCO, HRS, 

MARK II, MAC
up to 29 GeV ~ 300 pb-1

PETRA

JADE, MARK J

PLUTO, TASSO

CELLO

12 – 47 GeV ~ 20 pb-1

TRISTAN TRISTAN 50 – 60 GeV ~ 20 pb-1

SLC MARK II, SLD 90 GeV ~ 25 pb-1

LEP
ALEPH, DELPHI, 

OPAL, L3
90 – 200 GeV

~ 200 pb-1

~ 700 pb-1

Integrated luminosity
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PETRA e+e- storage ring
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The PETRA e+e– Collider

Cello, Pluto

Tasso

Mark J

Jade

~ 0.7 km
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Example: JADE detector
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Example: The JADE Detector
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Example: JADE detector
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1336 R Marshall 

Figure 2. Geiger and Rutherford sitting by their apparatus (circa 191 1 ). 

Figure 3. Scientists from the JADE experiment and their apparatus (1983). 

Example: The JADE Detector
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TRISTAN accelerator & detector
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THE PERFORMANCE OF TRISTAN AND ACCELERATOR DEVELOPMENT AT KEK 

Y. Kimura 

KEK, National Laboratory for High Energy Physics 
Oho, Tsukuba-shi, Ibaraki-ken, 30.5, Japan 

Abstract - 

The performance of TRISTAN, a high energy electron-positron 
colliding beam accelerator in Janan, is described with an emuhasis on 
the longterm operation of the s;perconducting RF cavity @stem and 
a luminosity upgrade plan by use of superconducting mini-beta 
quadrupole magnets. Also presented are accelerator development 
works for two principal post-TRISTAN accelerator projects for high 
energy physics, a linear electron-positron collider project and an 
asymmetric B-factory project. 

Introduction 

The TRISTAN electron-positron colliding beam accelerator was 
commissioned in November 1986. Since then the first phase 
colliding beam experiments had been carried out till the end of 19X9, 
in which observation of new elementary particle phenomena had been 
pursued with increasing the colliding beam energy from 25 GeV to 32 
GeV.1 This year we have begun the second phase TRISTAN 
operation which aims at accumulating a few hundreds of inverse pico- 
barns in integrated luminosity at several collision energies covered by 
the first phase operation for precise measurements of electron- 
positron interactions. 

Following the completion of TRISTAN, post-TRISTAN 
accelerator projects have been under discussion in the Japanese high 
energy physics community. The High Energy Committee, an 
organization of the high energy physicists, has been proposing, as a 
first priority item, to make intensive R&D efforts on a TeV-class 
linear electron-positron collider as a possible home based facility, and 
also to make feasibility studies of an asvmmctric B-factory with a 
peak luminosity well above l@s cm-x.sec-*t. 

TRISTAN 

Accelerator Performance 
The TRISTAN accelerator complex consists of four separate 

accelerator systems as illustrated in Fig. 1. A 400 m long main linac 
accelerates electrons and positrons to 2.5 GeV. Positrons are 
produced by bombardment of a tantalum target with high-current 
electron beam of 200 MeV from a tinac constructed at the upstream 
end of the main linac and, then, accelerated to 250 MeV by another 
linac located downstream of the conversion tareet nrior to the transfer 
to the main linac. 
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Electrons and positrons accelerated in the linac are injected and 
accumulated in the TRISTAN accumulation ring. The accumulation 
ring is a storage accelerator, 377 m in circumfer&ce, and accelerates 
the accumulated beam to 8 GeV for the transfer to the main colliding 
beam ring. 

The TRISTAN main collider has a circumference of 3018 m and 
such a shape that four quadrant arcs of 347 m in the mean curvature 
radius are connected together by four 194 m long straight sections. 
Two electron and two positron bunches circulating in opposite 
directions collide with each other at the midpoints of the straight 
sections, where the colliding beam detectors are located. RF cavities 
to accelerate beams are aligned on the both sides of the detector 
regions in the straight sections. 

Table 1 Summary of the fist phase TRISTAN operation 

Beam Energy Operation Time (hours) 
GeV) Total Exp. runs Act. R&D Beam stop 
25.0 1459 133 500 226 
26.0 763 556 119 88 
27.5 1311 725 410 176 
28.0 914 476 365 73 
28.25 462 243 191 28 
28.5 593 482 64 47 
30.0 441 364 43 34 
28.62-30.4 1504 1194 149 161 
30.7 1023 642 134 247 
31.8, 32 955 460 440 55 
Total 9425 5875 2415 113s 

As stated above, in the past three years we had concentrated our 
efforts on upgrading the TRISTAN beam energy by use of 
superconducting RF cavities. Table 1 summarizes the first phase 
TRISTAN operation at the beam energies ranging from 25 GeV to 32 
GeV. Listed in Table 2 are the TRISTAN main collider parameters 
achieved so far. 

The maximum beam energy of 32 GeV was obtained with the RF 
accelerating system consisting of 104 units of the nine-cell APS-type 
room temperature cavities and 32 units of the five-cell 
superconducting cavities. Total accelerating voltage required at 32 
CieV was 500 MV, of which 310 MV was provided by the room 
temperature cavity system and 190 MV by the superconducting cavity 
system. 

: 
,1.11*1, l,l”lll “Wwj 

,,---. 
‘\ . 

Hall ‘bhd’ 
[AMY1 

= e’ -so”rce ’ L, I / 
0 100 xc mm 

Fig. 1 Site layout of the TRISTAN accelerator complex and an 
asymmetric B-factory planned. 
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faster than the cavity time constant of about 600 psec. We think this 
to be attributable to a spark discharge in the cavity caused by the 
synchrotron radiation generated at the arc-end of the ring. 

Sunerconductina Mini-beta Quadrunole Marnet 
A straightforward way to improve the beam collider luminosity is 

to reduce the beta-functions or beam sizes at the collision point. For 
this purpose, we are going to install a so-called mini-beta system in 
the TRISTAN main collider.4 It consists of a pair of superconducting 
quadrupole magnets, QCS, located inside the present low-beta 
insertion as illustrated in Fig. 4. The lowest beta-functions achievable 
with this mini-beta system is determined by the quadrupole location, 
which is brought closest to the collision point avoiding the 
interference with the experimental detector. Optics parameters of the 
mini-beta system thus designed are given in Table 3, and a doubling 
of the luminosity is foreseen after installation of the system. 

Four pairs of the superconducting quadrupole magnets for the 
mini-beta system are under construction and to be mounted in the four 
experimental insertions of the TRISTAN main collider in this summer 
shut-down. The magnets are an iron free type to avoid the magnetic 
interaction with the detector solenoid. Figure 5 illustrates a cross- 
section of the magnet assembled in a horizontal cryostat. The inner 
diameter of the warm bore is 104 mm and the outer diameter of the 
vacuum vessel is 400 mm. The coil is a four-layer two-wedge 
structure with an inner and outer diameter of 140 mm and 217.7 mm, 
respectively. The magnet is designed to be operated at a maximum 
field gradient of 70 T/m in 4.4% single-phase liquid helium. The 
effective magnet length is I .17 m. Principal magnet parameters are 
listed in Table 3. Three features special to the present coil fabrication 
have to be noted, i.e. (1) use of precisely machined FRP end spacers 
to make the end tight and reduce the training, (2) adoption of a double 
pancake winding method to reduce the number of electrical joints 

Table 3 Design parameters of the TRISTAN 
superconducting mini-beta system 

Ontics Darameters 
QCS location 
(magnet front end to the collision point) 
Beta-functions at the collision point 
(horizontal/vertical) 
Luminositv enhancement 

OCS uarameters 
Magnet length (magnetic length) 
Inner warn-bore radius 
Field gradient 
Coil current 
Inductance 
Diameters of strands/filaments 
Field uniformity (R,,/B~) 

2.5 m 

1.25m/O.O5 m 

1.9 

1.45 m (1.17 m) 
so mm 
70 T/m 

3405 A 
58 mH 

0.68mm/8.7pm 
15 x 10-1 
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4 
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Fig. 4 Configuration of one of the four TRISTAN experimental 
insertions equipped with the superconducting mini-beta 
quadrupole magnets, QCS. 

between the coils, and (3) winding with two kinds of cables with 
different cable-lay-direction each other to avoid twisting of the 
assembled coil. 

The eight quadrupole magnets have been completed and tested in a 
vertical cryostat. Figure 6 shows a training behavior of the eight 
magnets. All the magnets exceeded the design current of 3405 A 
within two training quenches. We have measured the magnetic field 
inserting a 1.5 m long room temperature rotating coil of 39.4 mm in 
radius in the magnet bore. Figure 7 shows the measured integrated 
harmonic contents which are expressed as a ratio to the quadrupole 
component at the radius of the rotating coil. 

Fig. 5 Cross-section of the superconducting quadrupole magnet 
assembled in a horizontal cryostat. 
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Fig. 6 Training behavior of the eight superconducting quadrupole 
magnets fabricated. Black circles and triangles indicate 
inner and outer coil quenches, respectively. White circles 
indicate the maximum currents of the power supply, ant1 
have been reached without quench 
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Fig. 7 Integrated harmonic contents measured for the eight 
superconducting quadrupole magnets fabricated. 

Max. beam energy: 32 GeV
Injection energy: 8 GeV
Beam lifetime: 5-6 hr.
Peak luminosity: 1.4x1031 cm-2s-1

Schema of the detector
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Event reconstruction
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Event Display & Particle ID
Electron 
Signature

Hadron 
Signature (charged)

Muon 
Signature

Photon 
Signature

Schematic

TASSO-Experiment

Hadronic event at !s = 35.8 GeV

Electromagnetic 
calorimeter

Hadronic 
calorimeter
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p

E

dσQED
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Reminder: e+e- kinematics
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e+ e-

z

Kinematic variables Expected cross section

u

lepton / quark / photon

anti-lepton / anti-quark / photon

u

t

Radiative
(higher order)

corrections
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How do we measure a cross section?
To measure a cross section we divide the measured number of events by 
the integrated luminosity: s = N/L

12

70 B. Naroska. e e physics with the JADE detector at PETRA

l~(GeV)

40

3CA -

20

10 —

0 I I I I I I
1979 80 81 82 83 8/. 85 1986

YEAR

Fig. 1.1. The centre-of-mass energy of PETRA from 1979 until 1985.

Many of the JADE results benefit from a number of important properties of the detector: The
pictorial qualities of the jet-chamber and its good double-track resolution result in a high efficiency for

track reconstruction, even in complicated events. The homogeneity of the lead-glass shower detector
combined with its high granularity and resolution give an efficient recognition of showering particles,
which is almost unambiguous in simple events and still satisfactory in complicated hadronic events. The

low noise level allows detection of showers of energies as low as 100 MeV. The multilayer muon filter
allows muon recognition even in a hadronic jet. The detector can be triggered efficiently by a

calorimetric trigger derived from the signals of the lead-glass arrays. The jet-chamber is in addition
capable of giving a very efficient track-trigger due to the large number of points measured on a track.
An important feature of the JADE detector is the large coverage of solid angle by the major detector

components: the jet-chamber, the lead-glass arrays and the muon filter each cover more than 90% of
the full solid angle.
The purpose of this report is to survey the work of the JADE collaboration during the first six years

of data taking and summarize the main results. It continues the series of summary reports on
experimental e~e results from DESY, which includes reports about PLUTO (data from DORIS and
PETRA) [23],MARK J [39]and a global review about all five PETRA experiments including data
taken before the middle of 1983 [2].The report is not exhaustive, some investigations or results will be

50 i I I I I I I I I I

pb~ Integrated Luminosity
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__ Do -
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Fig. 1.2. The integrated luminosity collected by the JADE experiment as a function of the centre-of-mass energy.
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Bhabha scattering
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2. QED Cross Sections 

The differential cross sections for QED reactions are 
usually [10] written in the form 

dO-QE D da o 
dO - dQ (1 + a r a d ) ,  (1) 

where dcro/df2 denotes the QED cross section to lowest 
order in 0{=e2/4n= 1/137. daQED/d~2 incorporates the 
radiative corrections 8r,a (the hadronic vacuum polar- 
ization is often also included in 6~aa, see next section). 
dao/df2 is given below for Bhabha scattering, lepton 
pair production and two photon annihilation in 
Lorentz invariant notation and also as function of 
the centre-of-mass energy ~ and the scattering 
angle 0 : 
e+e - -~e+e -  : e  9 

Y -t-- 
e e  9 e 

da ~ ~2 ~q,4 + s 2 2q"* q,,, + q4~ 
dO - 2s [ q4 + - -  + q2 s 8 2 J 

__ 0{2 ( 3 + C 0 S 2 0 / 2  
4s \ ~ ~ )  (21 

e+e -+#+/~L-"  9 ~ r- 

e / u N g 
d(7o 0{2 Jq14 _{_ q4~ 0{2 
d f 2 - 2 s [  S 2 J = 4 S  (1 + c~ (3) 

e+e - __,.Z +.C-  9 e ~ , . , , _ _ ~ / 1 :  

dr _ 0{2fl j qt4 + 2(1 - fla)q,2q2 + q4 
dO 2s [ 7 J 

0{2fl - (2 - f12 sin 20) (4) 4s 
e e + e - + ) 7 :  " ~ [ : ~ - : 7  u + ~ V  

e ~ -  . . . . . .  u e u 
dcro _ 0{2/q,a+q4~ _ 0{2 1 + cos20 (5) 
dO 2s [ q,2q2 j s sin20 

with q2 = _ s(1 - cos 0)/2, q,2 = _ s( 1 + cos 0)/2, fl = p/E. 
The polar angle 0 is measured with respect to the beam 
axis. The initial electrons and positrons are assumed to 
be unpolarized. Terms of order m/E are neglected, 
except in (4) which includes the threshold behaviour of 
the lepton pair production cross section. For 1 -  fi ~ 1 

(m~ ~ E 0 (3) and (4) become identical. The divergence of 
the first order Bhabha scattering cross section at 0 = 0 
is well known. Equation (3) can be integrated over the 
full solid angle which leads to the total cross section for 
/~ pair production 

490{ 2 86.8 a~  3 ~  ~ - - s  (nb, s in GeV2). (6) 

The amplitudes necessary to describe the reaction 
e+e - --,e+e - in the framework of QED up to order 0{3 
are shown as Feynman diagrams in Fig. 1. The first 
two diagrams stand for space- and timelike Bhabha 
scattering to lowest order in 0{=e2/4zc. The next 8 
graphs account for radiative corrections due to the 
emission of real photons. The following 14 graphs 
describe virtual radiative corrections and contribute to 
order 0{3 to the cross section via interference with the 
two lowest order amplitudes. Of these the first 8 are 
vertex and two photon exchange corrections, the other 
6 vacuum polarization. In/~ and r pair production only 
the timelike diagrams contribute. 

Fig. 1. Q E D  diagrams whmh contribute to the cross section up  to 
order c~ 3 for the reaction e+e -~e+e - 

The radiative corrections due to initial and large 
angle final state radiation produce an acollinearity of 
the final state particles. Figure 2 shows the distribution 
of the acollinearity angle* between electrons and posi- 
trons from Bhabha scattering as measured e.g. by 
JADE. Clearly, a cut in the acollinearity angle will lead 
to a loss of events. On the other hand, initial state 
radiation decreases the available centre-of-mass energy 
which leads to higher yields than expected at the 
nominal c.m. energies because of the 1/s dependence of 
the cross section. The size of the radiative corrections 
therefore depends on the cuts in the energies and the 
acollinearity angle of the final state particles. 
* The acollinearity angle is usually defined as J ~ - c o s - l ( n  1 n2) [ 
where n p  n 2 are unit vectors in the direction of  the two outgoing 
particles 

dσ0

dΩ
=

α2

2s

�
q�4 + s2

q4
+

2q�4

q2s
+

q�4 + q4

s2

�

=
α2

4s

�
3 + cos2 θ

1− cos θ

�2

�
3 + cos2 θ

1− cos θ

�2

Leading order cross section divergent for cos(u)=1, i.e. for u=0.

t-channel s-channel

interference
term
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Example: event display
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Bhabha scattering
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Current conservation excludes a Y, coupling between e, 
E*, and y. The allowed magnetic moment  coupling 
leads for dimensional reasons to a matrix element 
Miy(E* ) of the approximate form 

e .2 s 
Mif(E*) ~ mE,2 q2 _ me,z, 

mE, = mass of heavy electron 

where we have written the magnetic transition moment  
as e*/me,. The QED matrix element MiI(e ) is pro- 
portional to e2/(q 2 -  m~). Hence we expect qualitative- 
ly for m 2 ~ q2 ~ mE,2 : 

M i j ' ( E * )  (~A e*2 q2 

Mif(e) 2 C 2 / T / E  , 2  - -  mE.  2 

e . 2  
eZmE,4 s 2 sin 20/2. 

A quantitative calculation of the cross section [17] 
yields : 

d ~  0{ 2 1+COS20 ( s2@4 sin20 ) 
dQ - s sin20 1+ (21) 

Here A=mE, e ~  signifies the mass of the heavy 
electron E* if the coupling e* is equal to e. Division by 
the lowest order cross section leads to 

S 2 S 2 sin40 
6A(S, 0) = 2~ ~ sin20-- 2A 4 1 - c o s 2 ~  ' (22) 

In both cases, (20) and (22), the modifications at 0 = 90 ~ 
are of equal size and maximum. They are numerically 
smaller than in the case of Bhabha scattering or lepton 
pair productionl At ]~S-=31 GeV and 0 = 9 0  ~ a value 
of A = 4 0 G e V  gives 6=20% ( ~ - / A = 0 . 6 ) .  In Fig. 5 
values for 6A are displayed for ]/s/A = 1. 

•A ~ I I I I i I I I I I I I I 

0 .2  

0  i~ 
I I I i I I I I I i I I I I i I x 

0 0 .2  f i t .  0.6  0 . 8  1.0 

cos  @ 

Fig. 5. The correction term 6 a in two photon annihilation for 
s/A 2 = ] 

-1• "1o 

~, CX -,, ] -,:, 

I ' I ' I ~ I ' [ 

CELLO 1.16 330 < Y'g-< 3E7 GeV 

1.2 

0,B 

0 .6   9 I , l l l l t , I  
J A D E  1 ,/~ ~- 27.~ ~ ,T  ~ 357 Gay 

,o'2 t:__ 
0.8 

t ~ 06  ] t I cosq , I = I 
M A R K  J ;99 -~YT~6 ; G,v 
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Fig. 6. Differential cross section for the reaction e+e ->e+e - 
divided by the QED prediction. The data are corrected for radiative 
effects and hadronic vacuum polarization 

4. Experimental Results 

Bhabha scattering, ## and rz pair production and two 
photon annihilation have been studied by four experi- 
ments at PETRA,  i,e. the JADE [20], M A R K  J [21], 
PLUTO [22] and TASSO [23] collaborations. The 
CELLO group [24] has reported results on Bhabha 
scattering and two photon annihilation. The differen- 
tial cross sections are available from ]/7 = 12 GeV up 
to ] ~ - - 3 6 . 7 G e V .  Since PETRA is continuously pro- 
ducing more luminosity at increasingly higher energies, 
the results shown below are a snapshot of the current 
evaluation of the data. For completeness, we have 
included the PLUTO data at V s = 9 . 4 6 G e V  which 
were actually taken at DORIS. 

To display the data we have divided the measured 
cross sections by the 1st order QED prediction. The 
experimental cross sections have already been cor- 
rected for radiative effects and hadronic vacuum polar- 
ization. This procedure allows a comparison of dif- 
ferent experiments and also a direct comparison with 
the deviations 6 as discussed in the previous section. 
On the other hand, we did not try to combine the data 
of different experiments since systematic errors in the 
data are not negligible and could easily have the same 
origin. 

4.1. e + e- -+e +e- 

In Fig. 6 the differential cross sections are given for a 
wide range of energies. The data from the M A R K  J 

Ratio between measured cross section 
and QED calculation

1/s
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2. QED Cross Sections 

The differential cross sections for QED reactions are 
usually [10] written in the form 

dO-QE D da o 
dO - dQ (1 + a r a d ) ,  (1) 

where dcro/df2 denotes the QED cross section to lowest 
order in 0{=e2/4n= 1/137. daQED/d~2 incorporates the 
radiative corrections 8r,a (the hadronic vacuum polar- 
ization is often also included in 6~aa, see next section). 
dao/df2 is given below for Bhabha scattering, lepton 
pair production and two photon annihilation in 
Lorentz invariant notation and also as function of 
the centre-of-mass energy ~ and the scattering 
angle 0 : 

e+e - -~e+e -  : e  9 

Y -t-- 
e e 

 9 e 
da ~ ~2 ~q,4 + s 2 2q"* q,,, + q4~ 
dO - 2s [ q4 + - -  + q2 s 8 2 J 

__ 0{2 ( 3 + C 0 S 2 0 / 2  
4s \ ~ ~ )  (21 

e+e -+#+/~L-"  9 ~ r- 

e / u N g 
d(7o 0{2 Jq14 _{_ q4~ 0{2 
d f 2 - 2 s [  S 2 J = 4 S  (1 + c~ (3) 

e+e - __,.Z +.C-  9 e ~ , . , , _ _ ~ / 1 :  

dr _ 0{2fl j qt4 + 2(1 - fla)q,2q2 + q4 
dO 2s [ 7 J 

0{2fl 
- (2 - f12 sin 20) (4) 

4s 
e e + e - + ) 7 :  " ~ [ : ~ - : 7  u + ~ V  

e ~ -  . . . . . .  u e u 
dcro _ 0{2/q,a+q4~ _ 0{2 1 + cos20 (5) 
dO 2s [ q,2q2 j s sin20 

with q2 = _ s(1 - cos 0)/2, q,2 = _ s( 1 + cos 0)/2, fl = p/E. 
The polar angle 0 is measured with respect to the beam 
axis. The initial electrons and positrons are assumed to 
be unpolarized. Terms of order m/E are neglected, 
except in (4) which includes the threshold behaviour of 
the lepton pair production cross section. For 1 -  fi ~ 1 

(m~ ~ E 0 (3) and (4) become identical. The divergence of 
the first order Bhabha scattering cross section at 0 = 0 
is well known. Equation (3) can be integrated over the 
full solid angle which leads to the total cross section for 
/~ pair production 

490{ 2 86.8 
a~  3 ~  ~ - - s  (nb, s in GeV2). (6) 

The amplitudes necessary to describe the reaction 
e+e - --,e+e - in the framework of QED up to order 0{3 
are shown as Feynman diagrams in Fig. 1. The first 
two diagrams stand for space- and timelike Bhabha 
scattering to lowest order in 0{=e2/4zc. The next 8 
graphs account for radiative corrections due to the 
emission of real photons. The following 14 graphs 
describe virtual radiative corrections and contribute to 
order 0{3 to the cross section via interference with the 
two lowest order amplitudes. Of these the first 8 are 
vertex and two photon exchange corrections, the other 
6 vacuum polarization. In/~ and r pair production only 
the timelike diagrams contribute. 

Fig. 1. Q E D  diagrams whmh contribute to the cross section up  to 
order c~ 3 for the reaction e+e -~e+e - 

The radiative corrections due to initial and large 
angle final state radiation produce an acollinearity of 
the final state particles. Figure 2 shows the distribution 
of the acollinearity angle* between electrons and posi- 
trons from Bhabha scattering as measured e.g. by 
JADE. Clearly, a cut in the acollinearity angle will lead 
to a loss of events. On the other hand, initial state 
radiation decreases the available centre-of-mass energy 
which leads to higher yields than expected at the 
nominal c.m. energies because of the 1/s dependence of 
the cross section. The size of the radiative corrections 
therefore depends on the cuts in the energies and the 
acollinearity angle of the final state particles. 

* The acollinearity angle is usually defined as J ~ - c o s - l ( n  1 n2) [ 
where n p  n 2 are unit vectors in the direction of  the two outgoing 
particles 
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Higher order corrections
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∝ a2 = (1/137)2 = 5x10-5 

∝ a3 = (1/137)3 = 4x10-7 

∝ a4 = (1/137)4 = 2.8 10-9 

Initial (a) and final (b) state
radiations produce an
acollinearity of the final
state particles:
outgoing particles are not
exactly back-to-back

(a) (b)
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The virtual radiative corrections mainly distort the 
angular distributions (especially the two photon ex- 
change) and change the absolute cross sections. 

The radiative corrections for Bhabha scattering, 
lepton pair production and two photon annihilation 
have been calculated up to order c~ 3 and for details we 
refer the reader to the literature [-1(>12]. Since they 
depend on the experimental setup we do not give 
precise numbers here. For # pair production in e.g. the 
P L U T O  detector the radiative corrections vary be- 
tween + 5.4 % (cos 0 = 0.75) and - 2.2 % (cos 0 = - 0,75), 
if the acollinearity angle is restricted to be < 10 ~ and 
the muon momentum has to exceed 50 % of the beam 
energy at 1/7 = 30 GeV. 

The curve in Fig. 2 is the QED prediction for 
Bhabha scattering including the radiative corrections 
and folded with the angular resolution of the detector. 
The excellent agreement with the data leads to the 
conclusion that the radiative corrections for the emis- 
sion of real photons are understood, even at the 
highest PETRA energies. 

3. Modi f i ca t ion  o f  Q E D  

Two corrections to QED are expected to become 
measurable at PETRA, the hadronic vacuum polariza- 
tion, 6ha d, and the interference of the electromagnetic 
and weak interaction, 6w~ak. Any unexpected deviation 
from the known theory may be incorporated into a 
correction 3A. The modified cross section then reads 

d~ = dO'qE D (l -}- 6had -~ ~weak -~-(~A)* (7) 
df2 d~? "- 

where daoED/df2 is given by (1). Here and in the 
following it is understood that the radiative cor- 
rections to da/df2 had been accounted for. The modifi- 
cations 6 are in general a function of the scattering 
angle 0 and of the centre-of-mass energy ]/~, and are 
assumed to be small. Their actual parameterisation 
will be discussed below. 

3.1. Hadronic Vacuum Polarization 

The two graphs shown below contribute to Bhabha 
scattering and lepton pair production, and represent 
the hadronic vacuum polarization IIh, which is a 
modification of the photon propagator.  
The modification is related to the total cross section for 
e+e---+hadrons through a dispersion relation [13] 

s 'i ~ a(e+e--~hadrons) RelIh(S) = ~ P ds', 
4 m ~  S t - -  S 

(8) 

10 ~ _ 

l03  

\ 
10 2 

I/} 

g 
"8 

E 1 

I I 1 I I 
JADE 

preliminory 

e* e---~e § e -  

=3s G~v 

1 I I I I 
20 40 60 80 100 120 

ACOLLINEARITY ANGLE (Deg) 
Fig. 2. Acollineanty angle distribution for Bhabha scattering. The 
curve shows the QED predicuon folded with the angular resolution 
of the JADE lead glass detector 

where s has to be substituted by q2 for the spacelike 
part. This function is tabulated in [13] using the 
measured total cross section with all its resonances and 
thresholds. Therefore it includes all presently known 
quarks, with their bound states, as well as higher order 
corrections inside the quark-loop. Numerically Re//h 
is mainly dominated by the hadronic cross section at 
low energies. 

The Bhabha cross section modified for the ha- 
dronic vacuum polarization then reads (higher orders 
in 17 h neglected) : 

da dO-QE D ~2 r ,4 ~_ S 2 
- -  - { ~ q ~ -  ReHh(q 2) 

d~ df~ s 
t4 ~ t 4 - - ~ 4  

(9) 
After division of the second term by daqEo/d(2 one 
obtains : 

2 
6~,a(s, 0) = 3 + cos z 0 ((3 + cos 0) Re lh(q 2) 

- cos0(1 - cos0) RelTh(S)). (10) 

6h, a is 0 at 0 = 0  ~ since Hh(0)=0. At ] /s  =31 GeV and 
0--180 ~ it reaches ~ 5%. The functional dependence 
on 0 and ~ -  is displayed in Fig, 3a. The values for 6haa 
given here are smaller than those given in [13], where 
a ( ] / s  > 5 GeV) = 5. % ,  was assumed. Using R = 4 as 
the measurements [14] at PETRA suggest, ~had 
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2. QED Cross Sections 

The differential cross sections for QED reactions are 
usually [10] written in the form 

dO-QE D da o 
dO - dQ (1 + a r a d ) ,  (1) 

where dcro/df2 denotes the QED cross section to lowest 
order in 0{=e2/4n= 1/137. daQED/d~2 incorporates the 
radiative corrections 8r,a (the hadronic vacuum polar- 
ization is often also included in 6~aa, see next section). 
dao/df2 is given below for Bhabha scattering, lepton 
pair production and two photon annihilation in 
Lorentz invariant notation and also as function of 
the centre-of-mass energy ~ and the scattering 
angle 0 : 
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with q2 = _ s(1 - cos 0)/2, q,2 = _ s( 1 + cos 0)/2, fl = p/E. 
The polar angle 0 is measured with respect to the beam 
axis. The initial electrons and positrons are assumed to 
be unpolarized. Terms of order m/E are neglected, 
except in (4) which includes the threshold behaviour of 
the lepton pair production cross section. For 1 -  fi ~ 1 

(m~ ~ E 0 (3) and (4) become identical. The divergence of 
the first order Bhabha scattering cross section at 0 = 0 
is well known. Equation (3) can be integrated over the 
full solid angle which leads to the total cross section for 
/~ pair production 

490{ 2 86.8 
a~  3 ~  ~ - - s  (nb, s in GeV2). (6) 

The amplitudes necessary to describe the reaction 
e+e - --,e+e - in the framework of QED up to order 0{3 
are shown as Feynman diagrams in Fig. 1. The first 
two diagrams stand for space- and timelike Bhabha 
scattering to lowest order in 0{=e2/4zc. The next 8 
graphs account for radiative corrections due to the 
emission of real photons. The following 14 graphs 
describe virtual radiative corrections and contribute to 
order 0{3 to the cross section via interference with the 
two lowest order amplitudes. Of these the first 8 are 
vertex and two photon exchange corrections, the other 
6 vacuum polarization. In/~ and r pair production only 
the timelike diagrams contribute. 

Fig. 1. Q E D  diagrams whmh contribute to the cross section up  to 
order c~ 3 for the reaction e+e -~e+e - 

The radiative corrections due to initial and large 
angle final state radiation produce an acollinearity of 
the final state particles. Figure 2 shows the distribution 
of the acollinearity angle* between electrons and posi- 
trons from Bhabha scattering as measured e.g. by 
JADE. Clearly, a cut in the acollinearity angle will lead 
to a loss of events. On the other hand, initial state 
radiation decreases the available centre-of-mass energy 
which leads to higher yields than expected at the 
nominal c.m. energies because of the 1/s dependence of 
the cross section. The size of the radiative corrections 
therefore depends on the cuts in the energies and the 
acollinearity angle of the final state particles. 

* The acollinearity angle is usually defined as J ~ - c o s - l ( n  1 n2) [ 
where n p  n 2 are unit vectors in the direction of  the two outgoing 
particles 
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Muon pair production

Angular distribution is sensitive to electroweak corrections due to Z0 exchange
Additional term proportional to cos(u)

Total cross section (integrating over solid angle) goes as 1/s
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Differential cross section Total cross section vs. energy
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JADE: 3-Jet Event JADE: 3-Jet EventHard gluon radiation from final quark-antiquark pair
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Limits of QED
Question: what do we expect if QED is not the only physics involved in the 
scattering processes discussed so far?
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if QED is not everything?

Assume 
change of potential:

Modifies Propagator:

Reduced
Potential

Reduces X-Section
for t-channel interaction

Add. Contact 
Interaction

?

Define Scale !±:
[s-channel, q2 = s, s << !]

Modified
µµ cross section Account for

both possible signs
of potential change 

Interpretation of !:

Scale or distance r ~ 1/! at which
present theoretical model breaks done

[q2 << !2 ]

We define an energy scale L, or distance r~1/L, at which 
the QED theoretical model does not describe the data

Change of potential Change of propagator Change of cross section
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B. Naroska, e~ephysics with the JADE detector at PETRA 95

I I I I I I I I I I I I I I I I I I I I I I I
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• ee—4L~r

1.5 - 0 ee—.tt -
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1.0 -_____________
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2l

Fig. 2.15. Total cross-section ratio for e ~e- —~p.~p. and e~e- —* r T compared with the predictions from QED (full line) and standard model
(dashed line).

results assuming e—p. or e—-r universality are shown in lines 2 and 3 of table 2.5. Finally a common fit
was made of all data, assuming e—p. —‘r universality; the results are shown in the last line of table 2.5.
The prediction of the standard model for the axial—vector coupling constant is confirmed with an error
of 8%.

The weak coupling constants have also been determined in neutrino scattering off electrons, which is
also a purely leptonic process [53].There, two sets of solutions exist, one of which is excluded by the
e~e measurements. The remaining solution is [52]:

ae = 2g~= —0.990 ±0.052, ~e = 2g~= —0.076 ±0.094

in good agreement with the e+ e - values assuming lepton universality.

2.4.2. Determination of sin2 Ow and M~

We have compared the predictions of the standard model for the charge asymmetry A and the
normalised cross-sectionR (eqs. (2.7) and (2.10)) with the measured muon and tau asymmetries and R
values using the parameterization of x as in eq. (2.8) with M~and sin2 ~ as free parameters. The
contours of 68% and 95% CL. are shown for p. pairs in fig. 2.16. The limit at 95% C.L. is also shown
for a combined fit to p.- and\-r-pair data. The contour extends along the prediction of the standard
model, its “width” is related to the errors of the measured angular asymmetry and the “length” (and

Table 2.5

Coupling constants from 2-parameter fits and results for sin2 Ow

Input la I mel sin2 Ow

e~e 0.96~~ 0.30±0.33 0.26±0.10
1.11±0.11 0.36±0.50 0.16i~

* 0.88~~ 0.50±0.31 —

+ — + ..- + — +0.14 *0.03e e , p. p. , s r 1.02 ±0.08 0.3502, O.200.02

Rµµ = σmeas
σQED

Muon Pair Production (Exp.)

Z0

! ~ MZ

"s < 50 GeV 
PETRA:

PETRA √s < 47 GeV
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Muon Pair Production (Exp.)

Tristan

Petra

!s " 55 GeV 
Tristan:

Z0

#± = 200 GeV

#-exclusion limits
up to 250 GeV
[after correcting for EW effects]

r~6x10-18 m
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Part two:
Measurement of the electron
anomalous magnetic moment
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Electron magnetic moment
Rotating electrically charge body creates a magnetic dipole 

External magnetic field exerts a torque on the electron magnetic moment

Electrons have intrinsic magnetic moment, related to their spin

In case of electrons the magnetic moment is anti-parallel to the spin
The g-factor is equal to 2, as calculated from Dirac’s equation

Corrections to the g-factor are given by higher order QED contributions 
as well as hadronic and weak interactions. There could be additional 
contributions from physics beyond the Standard Model (SM)

When adding the corrections we usually talk of anomalous magnetic 
moment of the electron

26
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QED: higher order corrections
The one-loop corrections to the magnetic moment are due to vacuum 
fluctuation and polarization effects. For example:

The textbook calculation of the one-loop corrections gives corrections ~ 10-3 

(see References):

Hadronic and weak interactions are calculated (within the SM) to be very 
small and negligible, respectively
As we will see, the precision achieved by experimental results need QED 
predictions with a4 precision

27
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Current status of g/2 measurements

The precision nowadays is below 10-12!
Latest measurements 15 times more precise than previous result, which 
stood for about 20 years
Measured value is shifted by 1.7 standard deviations
How did we get to this astonishing precision?

28

March 28, 2009 8:26 World Scientific Review Volume - 9in x 6in leptmom

Electron Magnetic Moment 177

(3) The most accurate determination of the fine structure constant, by
more than an order of magnitude, comes from solving Eq. 6.2 for
α in terms of the measured g/2. (No physics beyond the Standard
Model, i.e. anew = 0, is assumed.)

(4) A search for physics beyond the Standard Model (e.g. electron sub-
structure) comes from using the best measurement of g/2 and the
best independent α (with calculated values of ahadronic and aweak)
in Eq. 6.2 to set a limit on anew.

(5) Comparing g/2 for an electron and a positron is the most stringent
test of CPT invariance with leptons.

Owing to the great importance of the dimensionless magnetic moment,
there have been many measurements of the electron g/2. A long list of
measurements of this fundamental quantity has been compiled [1]. Worthy
of special mention is a long series of measurements at the Univ. of Michigan
[2]. The spin precession relative to the cyclotron rotation of keV electrons
was measured. Also worthy of special mention is the series of measurements
at the Univ. of Washington [3]. In the end these measurements [4] used a
single electron trapped in a hyperbolic Penning trap.

New Harvard measurements determine the electron magnetic moment
[5, 7] to a much higher accuracy than do previous measurements. The
most recent in the long history of applying new methods to measuring g/2,
they supersede the UW measurement that stood for about twenty years [4].
The uncertainty is 15 times lower and the measured value is shifted by 1.7
standard deviations (Fig. 6.1.).

Harvard 2006
Harvard 2008

UW 1987

180 182 184 186 188 190 192

0 2 4 6 8 10 12

!g"2 ! 1.001 159 652 000#"10!12

ppt " 10!12

Fig. 6.1. Most accurate measurements of the electron g/2.

The substantially higher accuracy of the new measurements was the
result of new experimental methods, developed and demonstrated one thesis
at a time over twenty years by a string of excellent Ph.D. students – C.H.
Tseng, D. Enzer, J. Tan, S. Peil, B. D’Urso, B. Odom and D. Hanneke.
Progress continues in the ongoing work of Ph. D students S. Fogwell and
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Experiment: main ingredients

Single-electron quantum cyclotron: 
A Penning trap suspends and confines the electron in an atom-like state

Fully resolved cyclotron and spin energy levels: 
Accurate measurements of the resonant frequencies of driven 
transitions between the energy levels of this homemade atom – an 
electron bound to our trap – reveals the electron magnetic moment in 
units of Bohr magnetons, g/2

Detection sensitivity sufficient to detect one quantum transitions
Frequency detection sensitivity in the radio and microwave region
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Penning trap
Penning trap confines electrons by using:

A strong vertical magnetic field to confine 
particles radially
A quadrupole electric field to confine 
particles axially

The magnetic field is produced by a solenoid
The electric field is produced by three 
electrodes: one ring and two endcaps
The trajectory in the radial plane is 
characterized by two frequencies

30

Magnetron frequency: v-
Modified cyclotron frequency: v+
The cyclotron frequency is (v+ + v-)
A small-frequency oscillation is also in
the vertical plane (axial frequency vz)

100 V

150 GHz133 kHz

200 MHz
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Energy levels measurement
A non-relativistic electron in a magnetic field has energy levels:

Depend on the cyclotron frequency (nc) and on the spin frequency (ns)

Since ns and nc differ only by a part per 103 measuring na and nc to a precision of 1 part 
on 1010 gives g/2 to 1 part to 1013.
Two advantages of this technique:

One can measure the ratio of two frequency to very high precision
Since the B field appears in both numerator and denominator, the 
dependence on the magnetic field cancels in the ratio
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Energy levels measurement
Including the relativistic corrections, the 
energy levels are given by:
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Fig. 6.2. Lowest cyclotron and spin levels of an electron in a Penning trap.

The lowest cyclotron and spin energy levels are represented in Fig. 6.2..
Special relativity is important for even the lowest quantum levels. The

third term in Eq. 6.5 is the leading relativistic correction [7] to the energy
levels. Special relativity makes the transition frequency between two cy-
clotron levels |n,ms〉 ↔ |n + 1,ms〉 decrease from ν̄c to ν̄c + ∆ν̄c, with the
shift

∆ν̄c = −δ(n + 1 + ms) (6.6)

depending upon the spin state and cyclotron state. This very small shift,
with

δ/νc ≡ hνc/(mc2) ≈ 10−9, (6.7)

is nonetheless significant at our precision. An important new feature of
our measurement is that special relativity adds no uncertainty to our mea-
surements. Quantum transitions between identified energy levels with a
precisely known relativistic contribution to the energy levels are resolved.
When only the average cyclotron frequency of an unknown distribution of
cyclotron states was all that can be measured [4], figuring out the size of
the relativistic frequency shift was difficult.

We have seen how g/2 is determined by the anomaly frequency νa and
the free-space cyclotron frequency νc = eB/(2πm). However, neither of
these frequencies is an eigenfrequency of the trapped electron. We actually
measure the transition frequencies

f̄c ≡ ν̄c −
3

2
δ (6.8)

ν̄a ≡ g

2
νc − ν̄c (6.9)
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resolved. Accurate measurements of the resonant frequencies of driven
transitions between the energy levels of this homemade atom – an elec-
tron bound to our trap – reveals the electron magnetic moment in units of
Bohr magnetons, g/2. The energy levels and what must be measured to
determine g/2 are presented in this section. The experimental devices and
methods needed to realize the one-electron quantum cyclotron are discussed
in following sections.

A nonrelativistic electron in a magnetic field has energy levels

E(n,ms) = g
2hνcms + (n + 1

2 )hνc. (6.3)

These depend in a familiar way upon the electron’s cyclotron frequency νc

and its spin frequency νs ≡ (g/2)νc. The electron g/2 is thus specified by
the two frequencies,

g

2
=

νs

νc
= 1 +

νs − νc

νc
= 1 +

νa

νc
, (6.4)

or equivalently by their difference (the anomaly frequency νa ≡ νs − νc)
and νc. Because νs and νc differ by only a part-per-thousand, measuring
νa and νc to a precision of 1 part in 1010 gives g/2 to 1 part in 1013.

Although one electron suspended in a magnetic field will not remain in
one place long enough for a measurement, two features of determining g/2
by measuring νa and νc are apparent in Eq. 6.4.

(1) Nothing in physics can be measured more accurately than a fre-
quency (the art of time keeping being so highly developed) except
for a ratio of frequencies.

(2) Although both of these frequencies depend upon the magnetic field,
the field dependence drops out of the ratio. The magnetic field thus
needs to be stable only on the time scale on which both frequencies
can be measured, and no absolute calibration of the magnetic field
is required.

To confine the electron for precise measurements, an ideal Penning trap
includes an electrostatic quadrupole potential V ∼ z2− 1

2ρ2 with a magnetic
field Bẑ [7]. This potential shifts the cyclotron frequency from the free-
space value νc to ν̄c. The latter frequency is also slightly shifted by the
unavoidable leading imperfections of a real laboratory trap – a misalignment
of the symmetry axis of the electrostatic quadrupole and the magnetic field,
and quadratic distortions of the electrostatic potential.

The lowest cyclotron energy levels (with quantum numbers n = 0, 1, . . .)
and the spin energy levels (with quantum numbers ms = ±1/2) are given
by

E(n,ms) =
g

2
hνcms + (n + 1

2 )hν̄c − 1
2hδ(n + 1

2 + ms)
2. (6.5)

Frequency shift due
to Penning trap

Relativistic
correction term

The experiment measures the following 
transition frequencies:
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The lowest cyclotron and spin energy levels are represented in Fig. 6.2..
Special relativity is important for even the lowest quantum levels. The

third term in Eq. 6.5 is the leading relativistic correction [7] to the energy
levels. Special relativity makes the transition frequency between two cy-
clotron levels |n,ms〉 ↔ |n + 1,ms〉 decrease from ν̄c to ν̄c + ∆ν̄c, with the
shift

∆ν̄c = −δ(n + 1 + ms) (6.6)

depending upon the spin state and cyclotron state. This very small shift,
with

δ/νc ≡ hνc/(mc2) ≈ 10−9, (6.7)

is nonetheless significant at our precision. An important new feature of
our measurement is that special relativity adds no uncertainty to our mea-
surements. Quantum transitions between identified energy levels with a
precisely known relativistic contribution to the energy levels are resolved.
When only the average cyclotron frequency of an unknown distribution of
cyclotron states was all that can be measured [4], figuring out the size of
the relativistic frequency shift was difficult.

We have seen how g/2 is determined by the anomaly frequency νa and
the free-space cyclotron frequency νc = eB/(2πm). However, neither of
these frequencies is an eigenfrequency of the trapped electron. We actually
measure the transition frequencies

f̄c ≡ ν̄c −
3

2
δ (6.8)

ν̄a ≡ g

2
νc − ν̄c (6.9)

1,1/2 ➙ 0,1/2

0,1/2 ➙ 0,-1/2

Cyclotron frequency ~ 150 GHz Spin flip
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Experimental setup

A Penning trap is used to artificially bound the electron in an 
orbital state
High voltage (100V) applied between cylindric and endcap 
contacts
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top endcap
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compensation
electrode

compensation
electrode
field emission
point

bottom endcap
electrode

nickel rings

microwave inlet
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quartz spacer

trap cavity electron

0.5 cm

Fig. 6.3. Cylindrical Penning trap cavity used to confine a single electron and inhibit
spontaneous emission.

uniform magnetic field (Bẑ). The potential (about 100 V) applied between
the endcap electrodes and the ring electrode provides the basic trapping
potential and sets the axial frequency ν̄z of the nearly harmonic oscillation
of the electron parallel to the magnetic field. The potential applied to the
compensation electrodes is adjusted to tune the shape of the potential, to
make the oscillation as harmonic as possible. The tuning does not change
ν̄z very much owing to an orthogonalization [11, 30] that arises from the
geometry choice. What we found was that one electron could be observed
within a cylindrical Penning trap with as good or better signal-to-noise
ratio than was realized in hyperbolic Penning traps.

Table 6.1. Properties of the trapped electron.

Cyclotron frequency ωc/(2π) 150 GHz

Trap-modified cyc. freq. ω+/(2π) 150 GHz
Axial frequency ωz/(2π) 200 MHz
Magnetron frequency ω−/(2π) 133 kHz

Cyclotron damping (free space) τ+ 0.09 s
Axial damping τz 30 ms
Magnetron damping τ− 109 yr

The principle motivation for the cylindrical Penning trap is to form a
microwave cavity whose radiation properties are well understood and con-
trolled – the best possible approximation to a perfect cylindrical trap cav-
ity. (Our calculation attempts with a hyperbolic trap cavity were much less
successful [12].) The modes of the electromagnetic radiation field that are

A high magnetic field (5 T) is necessary to increase the 
spacing between cyclotron energy levels (nc ∝B)  

Very low temperature (100 mK) increases the probability to 
populate the orbital ground state
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trap electrodes

solenoid

dilution
refrigerator

cryogen
reservoirs

microwave
horn

Fig. 6.4. The apparatus includes a trap electrodes near the central axis, surrounded by
a superconducting solenoid. The trap is suspended from a dilution refrigerator.

the interior volume of the trap cavity. A large dewar sitting on top of the
solenoid dewar provides the helium needed around the dilution refrigerator
below. The superconducting solenoid is entirely self-contained, with a bore
that can operate from room temperature down to 77 K. It possesses shim
coils capable of creating a field homogeneity better than a part in 108 over
a 1 cm diameter sphere and has a passive “shield” coil that reduces fluctua-
tions in the ambient magnetic field [18, 19]. When properly energized (and
after the steps described in the next section have been taken) it achieves
field stability better than a part in 109 per hour. We regularly observe
drifts below 10−9 per night.

6.2.4. Stabilizing the Energy Levels

Measuring the electron g/2 with a precision of parts in 1013 requires that
the energy levels of our homemade atom, an electron bound to a Penning
trap, be exceptionally stable. The energy levels depend upon the magnetic
field and upon the the potential that we apply to the trap electrodes. The
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In the limit ρ → 0, all but the m = 1 modes vanish.
For a perfect cylindrical cavity the only radiation modes that couple to

an electron perfectly centered in the cavity are TE1n(odd) and TM1n(odd).
If the electron is moved slightly off center axially it will begin to couple to
radiation modes with mnp = 1n(even). If the electron is moved slightly
off-center radially it similarly begins to couple to modes with m "= 1.

In the real trap cavity, the perturbation caused by the small space be-
tween the electrodes is minimized by the use of “choke flanges” – small
channels that tend to reflect the radiation leaking out of the trap back to
cancel itself, and thus to minimize the losses from the trap. The measured
radiation modes, discussed later, are close enough to the calculated fre-
quencies for a perfect cylindrical cavity that we have been able to identify
more than 100 different radiation modes for such trap cavities [14–16]. The
spatial properties of the electric and magnetic field for the radiation that
builds up within the cavity are thus quite well understood. Some of the
modes couple to cyclotron motion of an electron centered in the cavity,
others couple to the spin of a centered electron, and still others have the
symmetry that we hope will one day allow us to sideband-cool the axial
motion.

6.2.3. 100 mK and 5 T

Detecting transitions between energy levels of the quantum cyclotron re-
quires that the electron-bound-to-the-trap system be prepared in a definite
quantum state. Two key elements are a high magnetic field, and a low
temperature for the trap cavity. A high field makes the spacing of the cy-
clotron energy levels to be large. A high field and low temperature make
a very large Boltzmann probability to be in the lowest cyclotron state,
P ∝ exp[−hν̄c/(kT )], which is negligibly different from unity.

The trap cavity is cooled to 0.1 K or below via a thermal contact with the
mixing chamber of an Oxford Instruments Kelvinox 300 dilution refrigerator
(Fig. 6.4.). The electrodes of this trap cavity are housed within a separate
vacuum enclosure that is entirely at the base temperature. Measurements
on an apparatus with a similar design but at 4.2 K found the vacuum
in the enclosure to be better than 5 × 10−17 torr [17]. Our much lower
temperature make our background gas pressure much lower. We are able
to keep one electron suspended in our apparatus for as long as desired –
regularly months at a time. Substantial reservoirs for liquid helium and
liquid nitrogen make it possible to keep the trap cold for five to seven days
before the disruption of adding more liquid helium or nitrogen is required.

The trap and its vacuum container is located within a superconduct-
ing solenoid (Fig. 6.4.) that makes a very homogeneous magnetic field over
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quencies for which the uncertainty is the largest. Fig. 6.10. shows the good
agreement attained between the four measurements when the cavity shifts
are applied.
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Fig. 6.10. Four measurements of g/2 without (open) and with (filled) cavity-shift cor-
rections. The light gray uncertainty band shows the average of the corrected data. The
dark gray band indicates the expected location of the uncorrected data given our result
in Eq. 6.23 and including only the cavity-shift uncertainty.

6.5. Results and Applications

6.5.1. Most Accurate Electron g/2

The measured values, shifts, and uncertainties for the four separate mea-
surements of g/2 are in Table 6.2.. The uncertainties are lower for mea-
surements with smaller cavity shifts and smaller linewidths, as might be
expected. Uncertainties for variations of the power of the ν̄a and f̄c drives
are estimated to be too small to show up in the table. A weighted average of
the four measurements, with uncorrelated and correlated errors combined
appropriately, gives the electron magnetic moment in Bohr magnetons,

g/2 = 1.001 159 652 180 73 (28) [0.28 ppt]. (6.23)

The uncertainty is 2.7 and 15 times smaller than the 2006 and 1987 mea-
surements, and 2300 times smaller than has been achieved for the heavier
muon lepton [41].
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6.5. Results and Applications

6.5.1. Most Accurate Electron g/2

The measured values, shifts, and uncertainties for the four separate mea-
surements of g/2 are in Table 6.2.. The uncertainties are lower for mea-
surements with smaller cavity shifts and smaller linewidths, as might be
expected. Uncertainties for variations of the power of the ν̄a and f̄c drives
are estimated to be too small to show up in the table. A weighted average of
the four measurements, with uncorrelated and correlated errors combined
appropriately, gives the electron magnetic moment in Bohr magnetons,

g/2 = 1.001 159 652 180 73 (28) [0.28 ppt]. (6.23)

The uncertainty is 2.7 and 15 times smaller than the 2006 and 1987 mea-
surements, and 2300 times smaller than has been achieved for the heavier
muon lepton [41].

Shifts are induced by interaction of electron 
with nearby cavity radiation modes

Solution: do measurements at various frequencies
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Theoretical predictions

The QED calculations provide the prediction for g/2 up to the fourth power of alpha:
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Table 6.2. Measurements and shifts with uncertainties multiplied by
1012. The cavity-shifted “g/2 raw” and corrected “g/2” are offset from
our result in Eq. 6.23.

f̄c 147.5 GHz 149.2 GHz 150.3 GHz 151.3 GHz

g/2 raw -5.24 (0.39) 0.31 (0.17) 2.17 (0.17) 5.70 (0.24)
Cav. shift 4.36 (0.13) -0.16 (0.06) -2.25 (0.07) -6.02 (0.28)
Lineshape

correlated (0.24) (0.24) (0.24) (0.24)
uncorrelated (0.56) (0.00) (0.15) (0.30)

g/2 -0.88 (0.73) 0.15 (0.30) -0.08 (0.34) -0.32 (0.53)

6.5.2. Most Accurate Determination of α

The new measurement determines the fine structure constant, α =
e2/(4πε0!c), much more accurately than does any other method. The fine
structure constant is the fundamental measure of the strength of the elec-
tromagnetic interaction in the low energy limit, and it is also a crucial
ingredient of our system of fundamental constants [42]. A full discussion of
α, its importance, the quantum electrodynamics theory used to determine
it from the measured g/2, and alternative methods to determine α is in
Chapter 8. Only the bare essentials of what is needed to determine α from
g/2 are summarized here.

The standard model relates g and α by

g

2
= 1 +C2

(α

π

)
+ C4

(α

π

)2
+ C6

(α

π

)3
+ C8

(α

π

)4

+ C10

(α

π

)5
+ ... + ahadronic + aweak, (6.24)

with the asymptotic series and the values of the Ck coming from QED. Very
small hadronic and weak contributions are included, along with the assump-
tion that there is no significant modification from electron substructure or
other physics beyond the standard model.

QED calculations (summarized more extensively in Chapter 8) give the
constants Ck,

C2 = 0.500 000 000 000 00 (exact) (6.25)

C4 = − 0.328 478 444 002 90 (60) (6.26)

C6 = 1.181 234 016 827 (19) (6.27)

C8 = − 1.914 4 (35) (6.28)

C10 = 0.0 (4.6). (6.29)

The QED theory for C2 [43], C4 [11, 13, 44], and C6 [47] is exact, with no
uncertainty, except for an essentially negligible uncertainty in C4 and C6

that comes from a weak functional dependence upon the lepton mass ratios,
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6.5.2. Most Accurate Determination of α

The new measurement determines the fine structure constant, α =
e2/(4πε0!c), much more accurately than does any other method. The fine
structure constant is the fundamental measure of the strength of the elec-
tromagnetic interaction in the low energy limit, and it is also a crucial
ingredient of our system of fundamental constants [42]. A full discussion of
α, its importance, the quantum electrodynamics theory used to determine
it from the measured g/2, and alternative methods to determine α is in
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with the asymptotic series and the values of the Ck coming from QED. Very
small hadronic and weak contributions are included, along with the assump-
tion that there is no significant modification from electron substructure or
other physics beyond the standard model.

QED calculations (summarized more extensively in Chapter 8) give the
constants Ck,

C2 = 0.500 000 000 000 00 (exact) (6.25)

C4 = − 0.328 478 444 002 90 (60) (6.26)

C6 = 1.181 234 016 827 (19) (6.27)

C8 = − 1.914 4 (35) (6.28)

C10 = 0.0 (4.6). (6.29)

The QED theory for C2 [43], C4 [11, 13, 44], and C6 [47] is exact, with no
uncertainty, except for an essentially negligible uncertainty in C4 and C6

that comes from a weak functional dependence upon the lepton mass ratios,
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mµ/me and mτ/me. Numerical QED calculations [48] give the value and
uncertainty for C8. The hadronic anomaly ahadronic, calculated within the
context of the Standard Model,

ahadronic
e = 1.682(20) × 10−12 , (6.30)

contributes at the level of several times the current experimental uncer-
tainty, but the calculation uncertainty in the hadronic anomaly is not im-
portant [38, 42]. The weak anomaly is completely negligible.

The most accurately determined fine structure constant is given by

α−1 = 137.035 999 084 (33) (39) [0.24 ppb] [0.28 ppb],

= 137.035 999 084 (51) [0.37 ppb]. (6.31)

The first line shows experimental (first) and theoretical (second) uncertain-
ties that are nearly the same. The theory uncertainty contribution to α is
divided as (12) and (37) for C8 and C10. It should decrease when a calcu-
lation underway [48] replaces the crude estimate C10 = 0.0 (4.6) [42, 50].
The α−1 of Eq. 6.30 will then shift by 2α3π−4C10, which is 8.0C10 × 10−9.
A change ∆8 in the calculated C8 would add 2α2π−3∆8.

The total 0.37 ppb uncertainty in α is 12 and 21 times smaller than
for the next most precise independent methods (Fig. 6.11.). These so-
called atom recoil methods (see Chapter 8) utilize measurements of the
Rydberg constant [17, 51], transition frequencies [21, 53], mass ratios [19,
55], and either a Rb [54] or Cs [57] recoil velocity measured in an atom
interferometer.

Harvard g/2 2006
Harvard g/2 2008

Rb 2008
Cs 2002 - 2006

599.90 599.95 600.00 600.05 600.10

0 5 10 15

!Α
"1
"137.03"#10"5

ppb # 10"9

Fig. 6.11. The most accurate determinations of α are determined from the measured
electron g/2. These are compared to the best independently measured values.

6.5.3. Testing the Standard Model and QED

The dimensionless electron magnetic moment g that is measured can be
compared to the g(α) that is predicted by the Standard Model of particle
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physics. The input needed to calculate g(α) is the measured fine structure
constant α (that is determined without the use of the electron magnetic
moment). The most accurately measured and calculated values of g/2 are
currently given by

g/2 = 1.001 159 652 180 73 (28) [0.28 ppt], (6.32)

g(α)/2 = 1.001 159 652 177 60 (520) [5.2 ppt]. (6.33)

The measurement is our one-electron quantum cyclotron measurement [6].
The calculated value g(α)/2 comes from using the Rb value of α(Rb08) in
Eq. 6.24. The large uncertainty in this “calculated” value actually comes
from the large uncertainty in the Rb α; the theoretical uncertainty is be-
lieved to be much smaller, comparable to the measurement uncertainty for
g/2. The Standard Model prediction is thus tested and verified to about 5
ppt. The much smaller 0.3 ppt uncertainty in the measured g/2, along with
the comparable uncertainty in the QED calculation, would allow a much
better test of QED.

About 1 part per thousand of the electron g/2 comes from the un-
avoidable interaction of the electron with the virtual particles of “empty
space”, as described by quantum electrodynamics (QED) and represented
in Fig. 6.12.. Where testing QED is the primary focus, measured and cal-
culated values of the so-called anomalous magnetic moment of the electron
(defined by a = g/2−1 so that the Dirac contribution is subtracted out) are
often compared. The measured and calculated values of a that correspond
to the g/2 values above are

a = 0.001 159 652 180 73 ( 28) [0.24 ppb], (6.34)

a(α) = 0.001 159 652 177 60 (520) [4.4 ppb], (6.35)

At the one standard deviation level, the difference of the measured and
calculated values is

δa = a − a(α) (6.36)

= g/2 − g(α)/2 (6.37)

= 3.1(5.2) × 1012. (6.38)

The possible difference between the measurement and calculation is thus
bounded by

|δa| < 8.3 × 1012, (6.39)

at the one standard deviation level, with this bound arising almost entirely
from the uncertainty in the measurement of α from Rb.

Some of the most precise tests of bound-state QED are compared in
Fig. 6.12. with the electron g/2. The QED test based upon the measure-
ments [56] and calculation [58] of g/2 for an electron bound in an ion

From this formula and theoretical predictions we can:
Measure the coupling constant a

Comparing the measured g/2 with expectation using a from other measurements

Measured
Predicted
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mµ/me and mτ/me. Numerical QED calculations [48] give the value and
uncertainty for C8. The hadronic anomaly ahadronic, calculated within the
context of the Standard Model,

ahadronic
e = 1.682(20) × 10−12 , (6.30)

contributes at the level of several times the current experimental uncer-
tainty, but the calculation uncertainty in the hadronic anomaly is not im-
portant [38, 42]. The weak anomaly is completely negligible.

The most accurately determined fine structure constant is given by

α−1 = 137.035 999 084 (33) (39) [0.24 ppb] [0.28 ppb],

= 137.035 999 084 (51) [0.37 ppb]. (6.31)

The first line shows experimental (first) and theoretical (second) uncertain-
ties that are nearly the same. The theory uncertainty contribution to α is
divided as (12) and (37) for C8 and C10. It should decrease when a calcu-
lation underway [48] replaces the crude estimate C10 = 0.0 (4.6) [42, 50].
The α−1 of Eq. 6.30 will then shift by 2α3π−4C10, which is 8.0C10 × 10−9.
A change ∆8 in the calculated C8 would add 2α2π−3∆8.

The total 0.37 ppb uncertainty in α is 12 and 21 times smaller than
for the next most precise independent methods (Fig. 6.11.). These so-
called atom recoil methods (see Chapter 8) utilize measurements of the
Rydberg constant [17, 51], transition frequencies [21, 53], mass ratios [19,
55], and either a Rb [54] or Cs [57] recoil velocity measured in an atom
interferometer.

Harvard g/2 2006
Harvard g/2 2008

Rb 2008
Cs 2002 - 2006

599.90 599.95 600.00 600.05 600.10

0 5 10 15

!Α
"1
"137.03"#10"5

ppb # 10"9

Fig. 6.11. The most accurate determinations of α are determined from the measured
electron g/2. These are compared to the best independently measured values.

6.5.3. Testing the Standard Model and QED

The dimensionless electron magnetic moment g that is measured can be
compared to the g(α) that is predicted by the Standard Model of particle
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8.1. Introduction

The fundamental and dimensionless fine structure constant α is defined (in
SI units) by

α =
1

4πε0

e2

!c
. (8.1)

The well known value α−1 ≈ 137 is not predicted within the Standard
Model of particle physics.

The most accurate determination of α comes from a new Harvard mea-
surement [7, 8] of the dimensionless electron magnetic moment, g/2, that
is 15 times more accurate than the measurement that stood for twenty
years [9]. The fine structure constant is obtained from g/2 using the theory
of a Dirac point particle with QED corrections [10–15]. The most accurate
α, and the two most accurate independent values, are given by

α−1(H08) = 137.035 999 084 (51) [0.37 ppb] (8.2)

α−1(Rb08) = 137.035 999 45 (62) [4.5 ppb] (8.3)

α−1(Cs06) = 137.036 000 0 (11) [8.0 ppb]. (8.4)

Fig. 8.1. compares the most accurate values.

Harvard g!2 2008
Harvard g!2 2006

Rb 2008
Rb 2006

UW g!2 1987

Cs 2006

599.80 599.85 599.90 599.95 600.00 600.05 600.10

!10 !5 0 5 10 15

"Α
!1
!137.03#!10!5

ppb

Fig. 8.1. The most precise determinations of α.

The uncertainties in the two independent determinations of α are within
a factor of 12 and 21 of the α from g/2. They rely upon separate mea-
surements of the Rydberg constant [16, 17], mass ratios [18, 19], optical
frequencies [20, 21], and atom recoil [21, 22]. Theory also plays an impor-
tant role for this method, to determine the Rydberg constant (reviewed in
Ref. 23) and one of the mass ratios [24].

Source: http://hussle.harvard.edu/~gabrielse/gabrielse/papers/2009/DeterminingTheFineStructureConstant.pdf 

http://hussle.harvard.edu/~gabrielse/gabrielse/papers/2009/DeterminingTheFineStructureConstant.pdf
http://hussle.harvard.edu/~gabrielse/gabrielse/papers/2009/DeterminingTheFineStructureConstant.pdf
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