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How to test QED theory

B Precision tests of the Quantum Electrodynamics theory usually consist in
the measurement of the electromagnetic fine structure constant a in
different systems. Experimental results are compared with theoretical
predictions

B The validation process requires very high precision in both measurements
and theoretical calculations

B QED is then confirmed to the extent that these measurements of a from
different physical sources agree with each other

B The most stringent test of QED is given by the measurement of the
electron magnetic moment. However, several other experimental tests
have been performed in different energy ranges ranges and systems:

+ Low energy range, accessible with small experiments
+ High energy range, accessible with particle colliders (e.g. e*e" colliders)
¢ Condensed matter systems

B As we will see, the achieved precision makes QED one of the most
accurate physical theories constructed so far
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Part one:
Tests of QED at high energy
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Tests of QED at high energy

® |n addition to the low-energy experiments, QED has been tested also in
high energy electron-positron collisions
B \We discuss here the following reactions:
¢ e+e- — ete- (Bhabha scattering)
¢ ete- — pt+u-, 7H71- (Lepton pair production)
¢ e+e- — vy (Two photon annihilation)
¢ e+e- — q q — hadrons (Total hadronic cross section)

® The energy range (Vs) between 12 GeV and 47 GeV was investigated with
the PETRA accelerator at DESY (Hamburg)

B High energy ranges (90-200 GeV) were covered by the LEP collider at
CERN (Geneva). However, electro-weak contributions to the cross-sections
become considerable at these energies

B Intermediate energies were covered by TRISTAN and SLC
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e+e- colliders

Accelerator Experiments
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Example: JADE detector
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Example: JADE detector

= 1 .l s o '.i‘
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TRISTAN accelerator & detector
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Event reconstruction

Electromagnetic Electron
—_— calorimeter Sighature

Hadron
Signature (charged)

Muon
Signature

Photon
Signature
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—_

Drift Chamber Time of Flight
Counter

Hadronic event at /s = 35.8 GeV
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Reminder: ete- kinematics

anti-lepton / anti-quark / photon

" "
e 0 e

\4

lepton / quark / photon

Kinematic variables Expected cross section
> (1 — cosb) doQED _ dog 14§
=TT . 10 o LT grad)
= _2(1 +2cos 0) y
g = P Radiative
- F (higher order)
corrections
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How do we measure a cross section?

B To measure a cross section we divide the measured number of events by
the integrated luminosity: ¢ = N/L

€, via measurement of
small angle scattering
positron
> <€
electron
e e
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Bhabha scattering

t-channel s-channel
Sum
3+ cos20\?
1—cosf )
et S e
. erm
2 14 2 14 4
@ _ @ (q TS L 2q + " +4q Interference
dS) 25 4 26 1 g2 Term
4 e q ,,,,,,,, Cross section e |
a2 3 _|_ COS2 0 2 diver‘ges for' 9 -> O
~ 45 \ 1 —cosd

B |eading order cross section divergent for cos(6)=1, i.e. for 6=0.
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Example: event display
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Bhabha scattering
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Higher order corrections

o2 = (1/137)2 = 5x10°5 e

e3
x o3 = (1/137)3 = 4x10°7

N o
o at = (1/137)*=2.8 10° et i + X
Initial (a) and final (b) state H ><
radiations produce an
acollinearity of the final

: e
state particles:

>8<

outgoing particles are not
exactly back-to-back
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Acollinearity measurement
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Muon pair production
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Muon pair production

Differential cross section Total cross section vs. energy
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B Angular distribution is sensitive to electroweak corrections due to Z° exchange
+ Additional term proportional to cos(6)
B Total cross section (integrating over solid angle) goes as 1/s
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Other final states

e T
e+>‘\/\‘< T+

/
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3 jets final states

Hard gluon radiation from final quark-antiquark pair
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Limits of QED

Question: what do we expect if QED is not the only physics involved in the
scattering processes discussed so far?

We define an energy scale A, or distance r~1/A, at which
the QED theoretical model does not describe the data

Change of potential Change of propagator Change of cross section
1 1 _Ar 1 1 q° 3ra? s 2
;—>;(1—€ ) —q—2—>_q_2<1+ﬁ> Opp = 9 <1j:A2—3>
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Beyond QED
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Beyond QED

1.50

1.25

fps

1.G0

0.75

0.50

r T 'I'

N-exclusion limits
up to 250 GeV

Tristan

[after correcting for EW effects] \

. A, = 200 GeV A -
] Petra r~6x10-18 m 1
]l Tristan:
Js % 55 GeV
L i i i L | ]
0.0 1000.0 2000.0 3000.0 4000.0
s [GeV?]

“uzh ' eth

V. Chiochia (Uni. Zirich) — Phenomenology of Particle Physics, HS2010

24



Part two:
Measurement of the electron
anomalous magnetic moment
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Electron magnetic moment

Rotating electrically charge body creates a magnetic dipole
+ External magnetic field exerts a torque on the electron magnetic moment

Electrons have intrinsic magnetic moment, related to their spin

e g e€

S

In case of electrons the magnetic moment is anti-parallel to the spin
The g-factor is equal to 2, as calculated from Dirac’s equation

« g—2
- -— """ ——— 0

27 2
Corrections to the g-factor are given by higher order QED contributions
as well as hadronic and weak interactions. There could be additional

contributions from physics beyond the Standard Model (SM)

a

g =1+ AQQED (Oé) + Qhadronic T Gweak + Gnew

When adding the corrections we usually talk of anomalous magnetic
moment of the electron
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QED: higher order corrections

B The one-loop corrections to the magnetic moment are due to vacuum
fluctuation and polarization effects. For example:

lepton

photon

lepton

B The textbook calculation of the one-loop corrections gives corrections ~ 10-3
(see References):

« g—2
_ @ _ ~ 0011614
“=o9r 2

® Hadronic and weak interactions are calculated (within the SM) to be very
small and negligible, respectively

B As we will see, the precision achieved by experimental results need QED
predictions with o* precision
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Current status of g/2 measurements

B The precision nowadays is below 10-12!
B Latest measurements 15 times more precise than previous result, which

ppt = 10712
0 2 4 6 10 12
i Harvard 2008
——i Harvarq 2006 . UW 1 987_
180 182 184 186 188 190 192

(g/2 — 1.001 159 652 000)/10™ 2

stood for about 20 years
B Measured value is shifted by 1.7 standard deviations
B How did we get to this astonishing precision?
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Experiment: main ingredients

B Single-electron quantum cyclotron:
+ A Penning trap suspends and confines the electron in an atom-like state
B Fully resolved cyclotron and spin energy levels:

+ Accurate measurements of the resonant frequencies of driven
transitions between the energy levels of this homemade atom — an
electron bound to our trap — reveals the electron magnetic moment in
units of Bohr magnetons, g/2

B Detection sensitivity sufficient to detect one quantum transitions
+ Frequency detection sensitivity in the radio and microwave region
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Penning trap

B Penning trap confines electrons by using:

+ Astrong vertical magnetic field to confine
particles radially

+ A quadrupole electric field to confine -
particles axially \. ,

B The magnetic field is produced by a solenoid \ x

B The electric field is produced by three \<
electrodes: one ring and two endcaps /
B The trajectory in the radial plane is / \l

characterized by two frequencies X \

' ' ' ' C

. i ———

( 200MHZ o, e >
=y = Magnetron frequency: w-
= / Modified cyclotron frequency: w+
The cyclotron frequency is (w+ + w.)
A small-frequency oscillation is also in

the vertical plane (axial frequency w;)
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Energy levels measurement

B A non-relativistic electron in a magnetic field has energy levels:

Y 1 eB g g eB
En,mg) ==hvems+ | n+ = | hi, . = =2y, = 2
( ) 2 ( 2) v 2mm g 21/ 22m™m

®E  Depend on the cyclotron frequency (vc) and on the spin frequency (vs)

Vs

Ve Ve Ve

Va

g
2

®  Since vs and v differ only by a part per 103 measuring va and vc to a precision of 1 part
on 10" gives g/2 to 1 part to 1073,

B Two advantages of this technique:
+ One can measure the ratio of two frequency to very high precision

+ Since the B field appears in both numerator and denominator, the
dependence on the magnetic field cancels in the ratio

uzh | eth V. Chiochia (Uni. Ziirich) — Phenomenology of Particle Physics, HS2010 31



Energy levels measurement

B Including the relativistic corrections, the
energy levels are given by:

Relativistic
correction term
Frequency shift due /
to Penning trap n=2
——
B( _9 1y 1 1 2 \_10-56/2
n,ms) = 2hucm5 + (n+ 5)hie — 5hé(n + 5 + my) Va = 1
®  The experiment measures the following Vo - 38/2 fo = V¢ - 35/2
transition frequencies: _*2— n=0
_ Va = gvc /2 -V¢
fo=m—50 1,120,112 Ve - 6/2
_ _ g _
Vazil/c_’/c 0,1/2—)0,'1/2 mS='1/2 mS= 1/2
Cyclotron frequency ~ 150 GHz Spin flip
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Experimental setup

dilution

refrigerator ||

trap electrodes

=

cryogen
reservoirs

=

x10

’
W
Bl A
4
Il
. A AL
solenoid — N2
T
HIPEAN
A
<]

microwave
horn

B APenning trap is used to artificially bound the electron in an
orbital state

®  High voltage (100V) applied between cylindric and endcap

contacts
trap cavity electron top endcap
electrode
quartz spacer compensation
electrode
nickel rings < ring electrode
0.5cm] compensation
bottom endcap electrode

electrode
microwave inlet

field emission
point

® A high magnetic field (5 T) is necessary to increase the
spacing between cyclotron energy levels (vc «B)

®  Very low temperature (100 mK) increases the probability to
populate the orbital ground state
P x exp|—hv./(kT)]
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Results

g/2 =1.00115965218073(28)  [0.28 ppt]

(0))

N

N

1
N

1
N

without cavity-shift correction |
e with cavity-shift correction

(g/2-1.001 159 652 180 73 )/ 107
o

I
(o)}

146 147 148 149 150 151 152
cyclotron frequency / GHz

Shifts are induced by interaction of electron
with nearby cavity radiation modes
Solution: do measurements at various frequencies
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Theoretical predictions

B The QED calculations provide the prediction for g/2 up to the fourth power of alpha:

Co = 0.500 000 000 000 00 (exact)
10 (D) v (2) o (2) ros () Oy = — 0.328 478 444 002 90 (60)
Cs = 1.181 234 016 827 (19)
Cs — — 1.914 4 (35)
Cio= 0.0 (4.6).
ag oM = 1.682(20) x 107"

5
+ C'10 ( ) + ... + Qhadronic T Aweak

B From this formula and theoretical predictions we can:
B Measure the coupling constant «
a~! = 137.035999 084 (33) (39) [0.24 ppb] [0.28 ppb]
= 137.035999 084 (51) (0.37 ppb.

B Comparing the measured g/2 with expectation using « from other measurements

g/2 = 1.001 159 652 180 73 (28) [0.28 ppt], Measured
g(a)/2 = 1.001 159 652 177 60 (520) [5.2 ppt]. Predicted
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Status of high-precision « measurements

Jele
-10 -5 0 5 10 15
-+ Harvard g/2 2008
UW g/2 1987 —e— Harvard g/2 2006
| * | Rb 2008
Rb 2006 . _ '
| : . Cs 2006

599.80 599.85 599.90 599.95 600.00 600.05 600.10
(@ 1-137.03)/107°

Source: http://hussle.harvard.edu/~gabrielse/gabrielse/papers/2009/DeterminingTheFineStructureConstant.pdf
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