Allgemeine Mechanik Serie 4

HS 10 Prof. R. Renner

Aufgabe 4.1 Schwingung um eine Kreisbahn

Betrachte eine schwach gestörte Kreisbahn vom Radius $\approx r_0$ im Zentralkraftproblem mit dem Potential V(r). Die reduzierte Masse sei $\mu = 1$.

a.) Zeige, dass der Radius mit der Frequenz

$$\omega = \sqrt{r_0^{-1} (3V'(r_0) + r_0 V''(r_0))}$$

um seinen Mittelwert r_0 oszilliert.

Hinweis: Verwende für das effektive Potential U(r) die quadratische Näherung um das Minimum r_0 herum.

b.) Für welche Potentiale V(r) schliesst sich jede solche gestörte Kreisbahn, wenn sich der Azimutwinkel ϕ nach einer radialen Periode (zwei aufeinander folgende Durchgänge durch $r_{\rm max}$) um (i) $\Delta \phi = 2\pi$, bzw. (ii) $\Delta \phi = \pi$ ändert?

Aufgabe 4.2 Periheldrehung

Wir betrachten ein gestörtes Kepler Problem mit dem Potential

$$V(r) = -\frac{M}{r} + \frac{\alpha}{r^3},$$

wobei α die Rolle eines (kleinen) Störparameters spielt und $M = m_1 + m_2$. Die Einheiten sind so gewält, dass $G = \mu = 1$. Wir benützen die Variable u = 1/r und untersuchen die Bahnkurve $u = u(\phi)$.

a.) Leite die folgende Differentialgleichung für $u(\phi)$ her:

$$u'' + u = l^{-2}(M - 3\alpha u^2). (1)$$

b.) Löse Gleichung (1) bis in erster Ordnung in α unter Benutzung der Lösung des ungestörten Problems ($\alpha = 0$):

$$u = l^{-2}M(1 + \epsilon \cos \phi)$$
, $(0 < \epsilon < 1)$.

Berechne die Verschiebung $\Delta \phi$ des Perihels pro Periode infolge der Störung bis in erster Ordnung in α . (Das Perihel ist definiert als der kürzeste Abstand einer elliptischen Planetenbahn zur Sonne.)

Tipp: Setze im Störterm von (1) die ungestörte Lösung ein und beachte, dass die Gleichungen

$$u'' + u = \begin{cases} A \\ A\cos\phi \\ A(\cos\phi)^2 \end{cases}$$

die Funktionen

$$u = \begin{cases} A \\ \frac{1}{2}A\phi\sin\phi \\ \frac{1}{2}A - \frac{1}{6}A\cos(2\phi) \end{cases}$$

als spezielle Lösungen haben.