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Aufgabe 10.1 Most probable distribution method

In the lecture we derived the Maxwell-Boltzmann distribution from a kinetic point of view.
We saw that fMB does not depend on the particular form of the molecular interactions.
Being interested only in the distribution of a gas at equilibrium, we suspect that its law
of distribution can be derived without consideration of its kinematics. We perform here
the derivation of fMB from a statistical point of view.
We start with the idea of the Gibbs ensemble by considering a gas of N particles confined
in a volume V . In chapter 10 we saw that any state of the system can be represented by
a point (p, q) = (p1, p2, ..., p3N , q1, ..., q3N) in its phase space Γ. The ensemble of points
corresponding to the same macroscopical conditions is called the representative volume
of the system. At equilibrium, we assume that the system can be found in all the states
corresponding to the same macroscopic conditions with equal probability. In other words,
the density function defined in (10.5) is a constant on the representative volume of the
system. If we fix the energy of the system between E and E + ∆ with ∆ � E, the
representative volume is a compact ensemble of points bounded by the energy surfaces E
and E + ∆. This is the so called microcanonical ensemble (10.8).
We now proceed as follows: We define the one-particle phase space µ, in which each particle
occupies one point (p, q) corresponding to its state. Thus the distribution of points in µ
defines the state of the whole system. Let us divide µ into K boxes each of volume
ω = ∆3p∆3q. The discrete distribution function fi is given by the number of particles Ni

inside the ith box:

fi =
Ni

ω
.

Averaging over the microcanonical ensemble, we have the equilibrium distribution function

f0i =
〈Ni〉
ω

,

which satisfies the following conditions:

K∑
i

Ni = N ,

K∑
i

Ni
p2

i

2m
= E (1)

It is clear that there exists an ensemble of points (p, q) ∈ ΓE,V,N which define the sa-
me distribution function fi, e.g. exchanging two particles, one from the ith box and the
other from the jth box, leaves Ni and Nj unchanged. The idea now is to find the dis-
tribution function which corresponds to the largest volume in ΓE,V,N . This gives us the
most probable distribution function of the system. We make the assumption that this is
nothing but the equilibrium distribution function f0i. Practically we are looking for the
set {Ni}K

1 which gives the largest volume Ω{Ni} ∈ ΓE,V,N such that the conditions (eq.
1) are satisfied.



1. Show that Ω{Ni} ∝ N !/N1!N2!...NK !.

2. In the following we set

Ω{Ni} ∝
N !

N1!N2!...NK !
gN1
1 gN2

2 ...gNK
K ,

where g1, g2, ..., gK are numbers that we put equal to unity at the end the calculation.
Show that f0i is nothing but the Maxwell-Boltzmann distribution. Hint: Maximize
log Ω{Ni} (why log?) with respect to Ni taking into account the conditions (eq. 1).
Calculate f0i.

3. The average of Ni over the microcanonical ensemble is given by

〈Nj〉 =

∑
Ni

NjΩ{Ni}∑
Ni

Ω{Ni}
.

Taking 〈Nj〉 ≈ N0j, show that the mean square fluctuation is given by

(∆Nj)
2 ≡ 〈N2

j 〉 − 〈Nj〉2 = N0j.

Hint: Show that for gi → 1 one has

〈Nj〉 = gi
∂

∂gi

∑
Ni

Ω{Ni}.

4. The probability of any set {Nj} to be realized is given by

P{Nj} =
Ω{Nj}∑
Ni

Ω{Ni}
.

Give the schematic plot of P{Nj} as a function of Nj/N and show that the assump-
tion 〈Nj〉 ≈ N0j is reasonable.

Hint: Express ∆(Nj/N), what happens for large N?

Aufgabe 10.2 Probability of spotaneous fluctuations

We can apply the results of Task 1 to compute the probability of spontaneous fluctuations.
Consider the air (gas in equilibrium) contained in a room of volume V . Compute the
probability for the gas to leave a small empty space v by spontaneous fluctuations. Discuss
the results.



Aufgabe 10.3 Hourglass

With this problem we want to learn how to solve a stochastic problem using a statistical
approach and in particular we want to explain why a hourglass (a system that can be
described by discrete non-stationary processes) can be used as a clock.
Assume that only one grain of sand at a time can pass through the hole with a probability
rate η that is independent from the state of the system.
The initial contition is given by the fact that the number of sand grains n in the bottom
part of the hourglass at t = 0 is zero:

P (n = 0, t = 0) = 1 or P (n 6= 0, t = 0) = 0 (2)

1. Show that the time evolution Ṗ (n, t) gives a probability P (n, t) that is directly
proportional to t.

2. Estimate the precision of the hourglass using the fluctuations of n.


