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Exercise 3.1 Relaxation of Polarized Spins Coupled to a Bath

Consider a system S of N (S) units with two states (spins ↑(S) and ↓(S)) that are coupled to
a reservoir R consisting of other two-state units (labeled as ↑(R) and ↓(R)) and is infinitely
larger than S. This is a simplified model for nuclear spins in a metal, whereby the nuclear
spins represent our system and the electrons (electron spins) the reservoir.
We assume that the microstates in S and R are non-degenerate with an energy difference
of ∆ε,
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The reservoir R is in its thermodynamic equilibrium such that the occupation probabilities
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where T (R) defines the temperature of R. At the beginning, t = 0, S shall not be in
equilibrium with R.
There is a coupling between the units of S and R in the following way. A spin of S can
only be reversed, if simultaneously a spin of R is flipped in the opposite way, i.e: ↑(S)→↓(S)

together with ↓(R)→↑(R) and ↓(S)→↑(S) together with ↑(R)→↓(R). This corresponds to spin
conservation as well as energy conservation.
Both types of processes occur with the same probability Γ (time reversal invariance):

|. . . , ↑, . . . 〉(S) ⊗ |. . . , ↓, . . . 〉(R) Γ−→ |. . . , ↓, . . . 〉(S) ⊗ |. . . , ↑, . . . 〉(R) (3)

|. . . , ↓, . . . 〉(S) ⊗ |. . . , ↑, . . . 〉(R) Γ−→ |. . . , ↑, . . . 〉(S) ⊗ |. . . , ↓, . . . 〉(R) (4)

From this consideration the effective transition rates (Γ↑↓, Γ↓↑) for the spins in S depend
on the probabilities of finding states ↑(R) and ↓(R) in R, such that
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a) Formulate the master equation for the system S where N
(S)
↑ and N

(S)
↓ denote the

occupation numbers of the two spin states (N
(S)
↑ + N

(S)
↓ = N (S)). What does the

condition of detailed balance imply?

b) Compute the time dependent polarization of the localized spin system, defined by

P (t)(S) = (N
(S)
↑ (t)−N (S)

↓ (t) )/N (S), for the following starting conditions at t = 0:

(i) unpolarized case (N
(S)
↑ = N

(S)
↓ ),

(ii) almost complete polarization in ↓-direction (N
(S)
↓ = N (S)(1−δ), N (S)

↑ = N (S)δ,
δ � 1),



(iii) almost complete polarization in ↑-direction (N
(S)
↑ = N (S)(1−δ), N (S)

↓ = N (S)δ,
δ � 1)

Determine the relaxation time for these three cases. Define a temperature of the
spin system T (S) for the three initial conditions by using a relation analogous to the
definition of the temperature of the reservoir, Eq. (2).

c) Calculate the H-function of S and its derivative with respect to time for the three
cases in b). Moreover, calculate the energy exchange between S and R as a function
of t (take the temperature of the reservoir T (R) as a parameter) for the same three
cases. How does the temperature T (S) evolve as a function of time? Calculate the
specific heat of S as a function of temperature T (S).

Exercise 3.2 The Linear Boltzmann Equation

The subject of this exercise is a Boltzmann equation no longer emerging from two-particle
scattering, as discussed in class, but from scattering of single particles by static impurities.
We assume that the particles do not interact among themselves, but are influenced by a
static background of impurities which causes a particle of momentum ~p to be scattered
to a state with new momentum ~p′. We assume that the scattering happens within a
negligibly short time interval and that it is elastic. Furthermore, we assume that each
static scatterer is isotropic.

a) Express these ideas mathematically: Find the relevant quantity describing the scat-
tering, along with any of its symmetries, and write down the ensuing equation for
f(~p, ~p, t).

b) List all quantities conserved in the scattering and prove the conservation law∫
d3pϕ(~p)

(
∂f(~r, ~p, t)

∂t

)
coll

= 0 , (6)

where ϕ(~p) denotes a conserved quantity.

c) State and prove the “H-theorem” for the linear Boltzmann equation. When is H
constant in time? How can this H-theorem be understood physically?
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