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Exercise 10.1 Time evolution of a density operator

a)

σiσj =
1
2

({σi, σj}+ [σi, σj ]) = δij1+ iεijkσk

⇒ (~a · ~σ)(~b · ~σ) = aibjσiσj

= aibj (δij1+ iεijkσk)

= aibi1+ iεijk aibjσk = (~a ·~b)1+ i(~a×~b) · ~σ

b) Using the definition of H,

U(t) =
∞∑

k=0

(−itH/~)k

k!
=

∞∑
k=0

(−itµB/2)k (~n · ~σ)k

k!

From (a) we have (~n · ~σ)2 = 1 and thus

(~n · ~σ)k =
{
1 for k even
~n · ~σ for k odd

Let’s split the sum into even and odd k

U(t) =
∞∑

k=0

(−itµB/2)2k (~n · ~σ)2k

(2k)!
+

∞∑
k=0

(−itµB/2)2k+1 (~n · ~σ)2k+1

(2k + 1)!

=
∞∑

k=0

(−1)k (tµB/2)2k

(2k)!
− i

∞∑
k=0

(−1)k (tµB/2)2k+1

(2k + 1)!
~n · ~σ

= cos
(

t
µB

2

)
1− i sin

(
t
µB

2

)
~n · ~σ

where in the last step we have recognized the Taylor expansion of the sinus and cosinus
functions.

Finally

U(t)−1 = exp (itH) = U(−t) = cos
(

t
µB

2

)
1+ i sin

(
t
µB

2

)
~n · ~σ

c) Writing χ = tµB
2 ,

ρ(t) = (cos χ 1− i sinχ ~n · ~σ)
1
2

(1+ ~a · ~σ) (cos χ 1+ i sinχ ~n · ~σ)

=
1
2

(cos χ 1− i sinχ ~n · ~σ)

· [(cos χ + i sinχ ~a · ~n)1+ (cos χ ~a + i sinχ ~n− sinχ ~a× ~n) · ~σ]
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=
1
2

[(
cos2 χ + i sinχ cos χ ~a · ~n− i sinχ cos χ ~n · ~a + sin2 χ ~n2 + i sin2 χ ~n · (~a× ~n)

)
1

+
(
cos2 χ ~a + i sinχ cos χ ~n− sinχ cos χ ~a× ~n− i sinχ cos χ ~n + sin2 χ (~a · ~n)~n
+sinχ cos χ ~n× ~a + i sin2 χ ~n× ~n− sin2 χ ~n× (~a× ~n)

)
· ~σ

]
=

1
2

[
1+

(
cos 2χ ~a + 2 sin2 χ (~a · ~n)~n− sin 2χ ~a× ~n

)
· ~σ

]
In the last step we have used ~n · (~a× ~n) = 0 and ~n× (~a× ~n) = ~a− (~a · ~n)~n.

If ~a ‖ ~n, we have (~a · ~n)~n = ±|~a|~n = ~a and ~a× ~n = 0, so indeed

ρ(t) =
1
2

(1+ ~a · ~σ) = ρ0

is time-independent.

Exercise 10.2 Combination of two spins 1
2

a) By definition of the direct product of two matrices,

Sx
1 ⊗ 1 =

~
2
σ1 ⊗ 1 =

~
2

(
0 1

1 0

)
1⊗ Sx

2 =
~
2
1⊗ σ1 =

~
2

(
σ1 0
0 σ1

)

⇒ Sx = (Sx
1 ⊗ 1) + (1⊗ Sx

2 ) =
~
2


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0


Similarly, one finds

Sy =
~
2


0 −i −i 0
i 0 0 −i
i 0 0 −i
0 i i 0

 Sz = ~


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1


The relation [Si, Sj ] = i~ εijkSk can be verified by direct computation.

We have also

S2 = ~2


2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2



b) In this formalism, | ↑↑〉 =


1
0
0
0

, | ↑↓〉 =


0
1
0
0

, | ↓↑〉 =


0
0
1
0

, | ↓↓〉 =


0
0
0
1

,

so we see directly that they are all eigenvectors of Sz:

Sz| ↑↑〉 = ~| ↑↑〉 Sz| ↓↓〉 = −~| ↓↓〉 Sz| ↑↓〉 = Sz| ↓↑〉 = 0

but not of S2

S2| ↑↑〉 = 2~2| ↑↑〉 S2| ↓↓〉 = 2~2| ↓↓〉 S2| ↑↓〉 = S2| ↓↑〉 = ~2 (| ↑↓〉+ | ↓↑〉)

Actually | ↑↑〉 and | ↓↓〉 are already eigenvectors of S2. For the others, it is straightforward
to find normalised linear combinations that are indeed eigenvectors:

S2 1√
2

(| ↑↓〉+ | ↓↑〉) = 2~2 1√
2

(| ↑↓〉+ | ↓↑〉) S2 1√
2

(| ↑↓〉 − | ↓↑〉) = 0
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c) Sz and S2 are Hermitian, therefore we have

〈L1, l1|Sz|L2, l2〉 = ~l1〈L1, l1|L2, l2〉 = ~l2〈L1, l1|L2, l2〉 ⇒ 〈L1, l1|L2, l2〉 = 0 for l1 6= l2

〈L1, l1|S2|L2, l2〉 = ~2L1(L1 + 1)〈L1, l1|L2, l2〉
= ~2L2(L2 + 1)〈L1, l1|L2, l2〉 ⇒ 〈L1, l1|L2, l2〉 = 0 for L1 6= L2

Therefore all the four vectors in B2 are orthogonal to each other, thus linearly independent.
Hence if they exist and are non-zero, they form automatically a basis of H1 ⊗H2.

This is indeed the case: from the point (b), we can take

|1, 1〉 = | ↑↑〉 |1, 0〉 =
1√
2

(| ↑↓〉+ | ↓↑〉) |1,−1〉 = | ↓↓〉 |0, 0〉 =
1√
2

(| ↑↓〉 − | ↓↑〉)

and they satisfy the conditions S2|L, l〉 = ~2 L(L + 1) |L, l〉 and Sz|L, l〉 = ~ l |L, l〉 (in any
other choice of the basis B2, the basis vector are just real multiples of these, so we can use
this choice as the most general one).

Using the definition above, we see directly that only |0, 0〉 is antisymmetric under spin ex-
change, the others being symmetric. Hence P |L, l〉 = (−1)L+1|L, l〉 is satisfied.

d) We have |1, 1〉 =


1
0
0
0

, |1, 0〉 = 1√
2


0
1
1
0

, |1,−1〉 =


0
0
0
1

, |0, 0〉 = 1√
2


0
1
−1
0

,

and by definition

S+ =
~

2
√

2


0 1 1 0
0 0 0 1
0 0 0 1
0 0 0 0

 S− =
~

2
√

2


0 0 0 0
1 0 0 0
1 0 0 0
0 1 1 0


Hence

S+|1, 1〉 = 0 S+|1, 0〉 = ~
2 |1, 1〉 S+|1,−1〉 = ~

2 |1, 0〉 S+|0, 0〉 = 0
S−|1, 1〉 = ~

2 |1, 0〉 S−|1, 0〉 = ~
2 |1,−1〉 S−|1,−1〉 = 0 S−|0, 0〉 = 0

The operators S± are therefore raising and lowering the index l, but only in the domain
|l| ≤ L.

Exercise 10.3 The electron g-factor

a) We consider a sphere of radius R, with homogeneous charge density ρ, rotating along the z
axis with angular velocity ω.

Each infinitesimal piece of this sphere carries a charge dq and induces an infinitesimal mag-
netic momentum along the z axis

dµ =
1
2
dq rv =

1
2
dq r2ω =

1
2
ρωr2 dV

so that the total magnetic moment of the electron is (subsituting ρ = e
V )

µ =
e

2V
ω

∫
r2 dV =

e

2m
ω

∫
r2 dm
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In the last equality we have used the fact that the mass density is also homogeneous. The
integral is nothing but the moment of inertia I of the sphere, and ωI is then the angular
momentum L (or equivalently the spin S):

µ =
eS

2m

Hence g = 1.

b) Let the homogeneous magnetic field ~B be along the z axis: ~B = Bêz. From exercise 2.2,
one can see that the electrons orbit in the storage ring at a frequency ωc = eB/m, which is
known as the cyclotron frequency.

The magnetic field exerts a torque ~τ on the magnetic moment of the electron:

~τ = ~µ× ~B

and according to the definition
~µ = g

e

2m
I~Ω

where ~Ω is the rotation frequency of the electron and I its moment of inertia.

The equivalent of Newton’s second law for rotations reads

~τ = I ~̇Ω

which yields
~̇Ω = g

e

2m
~Ω× ~B =

g

2
ωc

~Ω× êz

~Ω is time dependent. One can parametrise it as

~Ω = Ω(t)

 sin θ(t) sinφ(t)
sin θ(t) cos φ(t)

cos θ(t)


so that the equation above becomes

Ω̇

 sin θ sinφ
sin θ cos φ

cos θ

 + Ωθ̇

 cos θ sinφ
cos θ cos φ
− sin θ

 + Ωφ̇

 sin θ cos φ
− sin θ sinφ

0

 =
g

2
ωcΩ

 sin θ cos φ
− sin θ sinφ

0


The solution is then obviously Ω̇ = θ̇ = 0 and φ̇ = g

2ωc. This means that the magnetic
momentum ~µ is precessing around the axis z with an angular velocity ωp = g

2ωc.

c) The polarisation remains the same afer any number of turns if and only if the precession of
the electrons’ magnetic moment has the same frequency as the rotation of the electrons in
the ring (or an integer multiple thereof), i.e. if ωp = k ωc, k ∈ N.

From the result of point (b), it is straigthforward to see that this is the case if g equals
exactly 2.
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